Applied Physics B

, 125:160 | Cite as

Non-linear light scattering in photorefractive LiNbO3 crystals studied by Z-scan technique

  • Sergey KostritskiiEmail author
  • Michel Aillerie
  • Edvard Kokanyan
  • Oleg Sevostyanov


Experimental study of non-linear scattering (NLS) in nominally pure, Mg- and Zr-doped LiNbO3 crystals with a varying dopant concentration are reported in this paper. The study is undertaken by Z-scan technique with a cw-excitation at 514.5 nm. A modified open-aperture Z-scan experimental setup is used to evaluate the contributions of NLS in the observed transmission attenuation. Study of these open-aperture Z-scan traces shows that NLS has marked magnitude at moderate and high light intensities in undoped, strongly Zr-doped and Mg-doped LiNbO3, and a very significant magnitude in the moderately Zr-doped LiNbO3 crystals even at low intensities. NLS is related to the photoinduced light scattering (PILS), which is explained by holographic amplification of the seed scattering due to photorefractive effect.



S.M. Kostritskii, O.G. Sevostyanov, and E. Kokonyan thank the RFBR for support under Grant no. 18-52-05012.


  1. 1.
    Q. Wang Song, C.P. Zhang, P.J. Talbot, Self-defocusing, self-focusing, and speckle in LiNbO3 and LiNbO3Fe crystals. Appl. Opt. 32, 7266–7271 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, M. Sheik-Bahae, Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids. IEEE J. Quantum Electron. 32, 1324–1333 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    B. Gu, J. Wang, J. Chen, Y.-X. Fan, J. Ding, H.-T. Wang, Z-scan theory for material with two- and three-photon absorption. Opt. Express 13, 9230–9234 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    M. Rumi, J.W. Perry, Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photonics 2, 451–518 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    R. de Nalda, R. del Coso, J. Requejo-Isidro, J. Olivares, A. Suarez-Garcia, J. Solis, C.N. Afonso, Limits to the determination of the nonlinear refractive index by the Z-scan method. J. Opt. Soc. Am. B 19, 289–296 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Kostritskii, M. Aillerie, E. Kokanyan, Investigation of nonlinear refraction and absorption in Mg- and Zr-doped LiNbO3 with the aid of Z-scan techniques. Proc. SPIE 9065, 906508 (2013)CrossRefGoogle Scholar
  8. 8.
    F.Z. Henari, K. Cazzini, F.E. Akkari, W.J. Blau, Beam waist changes in lithium niobate during Z-scan measurement. Appl. Phys. Lett. 78, 1373–1375 (1995)Google Scholar
  9. 9.
    MdM Parvez, Experimental studies on the nonlinear optical properties of LiNbO3 crystals. Am. J. Sci. Ind. Res. 6, 69–73 (2015)Google Scholar
  10. 10.
    L. Palfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, R. Szipcs, Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. J. Appl. Phys. 95, 902–908 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Chen, S.W. Liu, D. Wang, T. Chen, M. Xiao, Measurement of laser-induced refractive index change of inverted ferroelectric domain LiNbO3. Appl. Opt. 46, 7693–7696 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Kostritskii, M. Aillerie, Z-scan study of nonlinear absorption in reduced LiNbO3 crystals. J. Appl. Phys. 111, 103504 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S.M. Kostritskii, M. Aillerie, Optical damage in reduced Z-cut LiNbO3 crystals caused by longitudinal photovoltaic and pyroelectric fields. J. Appl. Phys. 111, 013519 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Q.Q. Wang, J. Shi, B.F. Yang, H.L. Liu, G.G. Xiong, Q.H. Gong, Q.K. Xue, A Z-scan study of LiNbO3 thin film. Chin. Phys. Lett. 19, 677–679 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    N.Y. Kamber, G. Zhang, S. Liu, S.M. Mikha, W. Haidong, Study of the self-defocusing in LiNbO3:Fe, Mg crystals. Opt. Commun. 184, 475–483 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    J. Wen, ChY Gao, H.T. Yu, M. Zhao, J.J. Shang, X.L. Li, Investigation on third-order nonlinear optical properties of undoped LiNbO3 by modified Z-scan technique. Appl. Phys. B 123, 85 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    L. Palfalvi, K. Lengyel, A. Peter, J.A. Fulop, T. Reiter, J. Hebling, Theoretical and experimental development of the Z-scan method and its application for the characterization of LiNbO3. Proc. SPIE 7501, 75010F (2009)ADSCrossRefGoogle Scholar
  18. 18.
    N. Venkatram, R.S.S. Kumar, D.N. Rao, Nonlinear absorption and scattering properties of cadmium sulphide nanocrystals with its application as a potential optical limiter. J. Appl. Phys. 100, 074309 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, Nonlinear light scattering in a two-component medium: optical limiting application. Appl. Phys. B 67, 627 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, J. Xu, Highly optical damage resistant crystal: Zirconium-oxide doped lithium niobate. Appl. Phys. Lett. 91, 081908 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    V. Degiorgio, P. Minzioni, G. Nava, I. Cristiani, W. Yan, D. Grando, N. Argiolas, M. Bazzan, M.V. Ciampolillo, A.M. Zaltron, C. Sada, Photorefractivity of zirconium-doped lithium niobate. Proc. SPIE 8071, 80710R (2011)ADSCrossRefGoogle Scholar
  22. 22.
    S. González-Martínez, J. Castillo-Torres, J.A. Hernández, H.S. Murrieta, J.G. Murillo, R. Farias, Experimental evidence of a non-relationship between photorefractive inhibition and photoconductivity increase in LiNbO3:Mg. Opt. Commun. 282, 1212–1219 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    E. Kokanyan, E.J. Dieguez, New perspectives of lithium niobate crystals. Optoelectr. Adv. Mater. 2, 205–214 (2000)Google Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    J.-J. Liu, P.P. Banerjee, Q. Wang Song, Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3. J. Opt. Soc. Am. B 11, 1688–1693 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    M.R.R. Gesualdi, C. Jacinto, T. Catunda, M. Muramatsu, V. Pilla, Thermal lens spectrometry in pyroelectric lithium niobate crystals. Appl. Phys. B 93, 879–883 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    F. Lüdtke, N. Waasem, K. Buse, B. Sturman, Light-induced charge-transport in undoped LiNbO3 crystals. Appl. Phys. B 105, 35–50 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Kostritskii, O.G. Sevostyanov, Influence of defects on light-induced changes in refractive index of lithium niobate. Appl. Phys. B 65, 527–533 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    R. Ganeev, I. Kulagin, A. Ryasnyansky, R. Tugushev, T. Usmanov, Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals. Opt. Commun. 229, 403–412 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    H. Li, F. Zhou, X. Zhang, W. Ji, Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption. Appl. Phys. B 64, 659–662 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    R.K. Choubey, R. Trivedi, M. Das, P.K. Sen, P. Sen, S. Kar, K.S. Bartwal, R.A. Ganeev, Growth and study of nonlinear refraction and absorption in Mg doped LiNbO3 single crystals. J. Crys. Growth 311, 2597–2601 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    H. Badorreck, S. Nolte, F. Freytag, P. Bäune, V. Dieckmann, M. Imlau, Scanning nonlinear absorption in lithium niobate over the time regime of small polaron formation. Opt. Mater. Express 5, 2729–2741 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, T.R. Volk, An increase of photorefractive sensitivity in In:LiNbO3 crystal. Opt. Mater. 23, 269–272 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    G. Zhang, Q. Li, P. Ho, S. Liu, Z. Wu, R.R. Alfano, Dependence of specklon size on laser beam size via photo-induced light scattering in LiNbO3:Fe. Appl. Opt. 25, 2955–2958 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    M. Goulkov, M. Imlau, Th Woike, Photorefractive parameters of lithium niobate crystals from photoinduced light scattering. Phys. Rev. B 77, 235110 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    M.A. Ellabban, M. Fally, R.A. Rupp, T. Woike, M. Imlau, Holographic scattering and its applications, in Recent Research Developments in Applied Physics, vol. 4, ed. by S. Pandalai (Transworld Publishing, India, 2001), pp. 241–275Google Scholar
  39. 39.
    M. Imlau, Th. Woike, M. Fally, M. Ellaban, R. A. Rupp and M. Goulkov, Non-linear light scattering in polar oxides at the example of strontium-barium-niobate. in R. Wasser, U. Bottger, S. Tiedke (Editors) Proceedings of POLECER Conference, Chapter VII, 148 (2003)Google Scholar
  40. 40.
    O. Althoff, E. Kratzig, Strong light-induced refractive index changes in LiNbO3. Proc. SPIE 1273, 12–19 (1990)ADSCrossRefGoogle Scholar
  41. 41.
    I. Turek, N. Tarjányi, Opt. Express 15, 10782 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    L. Wan, Y. Yuan, G. Assanto, Switching and self-pulsing with dynamic holographic gratings in photorefractive waveguides. Opt. Commun. 74, 361–364 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    J. Sathian, E. Jaatinen, Reducing residual amplitude modulation in electro-optic phase modulators by erasing photorefractive scatter. Opt. Express 21, 12309–12317 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.RPC OptolinkZelenogradRussia
  2. 2.Laboratoire Matériaux Optiques, Photonique Et SystèmesLMOPS, Université de LorraineMetzFrance
  3. 3.Laboratoire Matériaux Optiques, Photonique Et SystèmesLMOPS, CentraleSupelec Université Paris-SaclayMetzFrance
  4. 4.Institute for Physical ResearchNational Academy of Sciences of ArmeniaAshtarakArmenia
  5. 5.Physics DepartmentKemerovo State UniversityKemerovoRussia

Personalised recommendations