Advertisement

Applied Physics B

, 125:158 | Cite as

Dual-cladding high birefringence photonic crystal fiber with elliptical-core

  • Chunhua Jia
  • Ning Wang
  • Keyao Li
  • Hongzhi JiaEmail author
Article
  • 43 Downloads

Abstract

A novel elliptical core photonic crystal fiber (EC-PCF) is proposed with a trapezoidal outer cladding and three different inner claddings in this paper. The material of proposed fiber is a combination of the background material of silica and core material of As2S3. Using the finite element method (FEM) with the boundary condition of the circular perfectly matched layer (C-PML), the effect of different inner cladding structures (ellipse plus circles, strip circles, and hexagonal circles) on birefringence and nonlinear coefficients is analyzed. Simulation results show that the inner cladding has revealed a high birefringence in the order of 3.3136 × 10-1 with strip circles, while the nonlinear coefficients for x- and y-polarization is 2.81 × 104 w−1/km and 2.09 × 104 w−1/km at an operation wavelength of 1.55 μm, respectively. The demonstration of our proposed fiber can supply a feasible method for optical communication and supercontinuum generation.

Notes

Acknowledgements

I would like to thank N. Wang and H. Z. Jia who provided language help during the research.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests.

References

  1. 1.
    E. Yablonvitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    P.S.J. Russell, Photonic band-gap. Phys. World 5, 37–42 (1992)CrossRefGoogle Scholar
  4. 4.
    J.C. Knight, T.A. Birks, P.S.J. Russell et al., All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    J.C. Knight, Photonic crystal fibers. Nature 424, 847–851 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    P.S.J. Russell, Photonic crystal fibers. Science 358, 299–302 (2003)Google Scholar
  7. 7.
    J.C. Knight, J. Arriaga, T.A. Birks et al., Photonic band-gap guidance in optical fibers. Science 282, 1476–1478 (1998)CrossRefGoogle Scholar
  8. 8.
    T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Knight, J. Arriaga, T.A. Birks et al., Anomalous dispersion in photonic crystal fiber. IEEE Photon Technol. Lett. 12, 807–809 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    K. Saitoh, M. Koshiba, Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Opt. Express 12, 2027–2032 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A.O. Blanch et al., Highly birefringence photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    W. Gobel, A. Nimmerjahn, F. Helmchen, Distortion-free delivery of nanojoule femtosecond pulses from a Ti: sapphire laser through a hollow-core photonic crystal fiber. Opt. Lett. 29, 1285–1287 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    G. Pickrell, W. Peng, A. Wang, Random-hole optical fiber evanescent-wave gas sensing. Opt. Lett. 29, 1476–1478 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    L. Michaile, C.R. Bennett, D.M. Taylor et al., Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area. Opt. Lett. 30, 1668–1670 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A. Efimov et al., Phase-matched third harmonic generation in microstructured fibers. Opt. Express 11, 2567–2576 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    J. Limpert et al., High-power airclad large-mode-area photonic crystal fiber laser. Opt. Express 11, 818–823 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    C.E. Kerbage, B.J. Eggleton, P.S. Westbrook et al., Experimental and scalar beam propagation analysis of an air-silica microstructure fiber. Opt. Express 7, 113–122 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    F. Tani, F. Belli, A. Abdolvand, J.C. Travers, P.S.J. Russell, Generation of three-octave-spanning transient Raman comb in hydrogen-filled hollow-core PCF. Opt. Lett. 40, 1026–1029 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Robert, J. Francis, J.M. Peter, Characterisation of longitudinal variation in photonic crystal fibre. Opt. Express 24, 24836–24845 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    M.J. Steel, R.M. Osgood, Polarization and dispersive properties of elliptical-hole photonic crystal fibers. J. Lightwave Technol. 19, 495–503 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    J. Ju, W. Jin, M.S. Demokan, Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photon Technol. Lett. 16, 2472–2474 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    X. Chen, M.J. Li, N. Venkataraman et al., Highly birefringent hollow-core photonic bandgap fiber. Opt. Express 12, 3888–3893 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    M.-Y. Chen, R.-J. Yu, A.-P. Zhao, Highly birefringent rectangular lattice photonic crystal fibres. J. Opt. A Pure Appl. Opt. 6(10), 997–1000 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    G.Y. Jiang, Y.J. Fu, Y. Huang, High birefringence rectangular-hole photonic crystal fiber. Opt. Fiber Technol. 26, 163–171 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    S.E. Kim, B.H. Kim, S. Lee, C.S. Kee, C.G. Lee, K. Oh, Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. Opt. Express 20, 1385–1391 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    X.Y. Li, P.A. Liu, Z.L. Xu, Z.Y. Zhang, Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion. Appl. Opt. 54, 7350–7357 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    M.A. Hossain, Y. Namihira, M.A. Islan, Polarization maintaining highly nonlinear photonic crystal fiber for supercontinuum generation at 1.55 μm. Opt. Laser Technol. 44, 1261–1269 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, Chalcogenide glass-fiber-based Mid-IR sources and applications. IEEE J. Sel. Top. Quantum 15, 114–119 (2009)CrossRefGoogle Scholar
  29. 29.
    R.A.H. Ali, M.F.O. Hameed, S.S.A. Obayya, Ultrabroadband supercontinuum generation through photonic crystal fiber with As2S3 chalcogenide core. J. Lightwave Technol. 34, 5423–5430 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    L. Zhang, Y. Yue, Y.X. Li, J. Wang, R.G. Beausoleil, A.E. Willner, Flat and low dispersion in highly nonlinear slot waveguides. Opt. Express 18, 13187–13193 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    J. Broeng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    S. Fevrier, P. Leproux, V. Couderc, Microstructured fibers for sensing applications. Proc. SPIE 6005, 60050E-15 (2016)Google Scholar
  33. 33.
    M.J. Steel, J.R.M. Osgood, Elliptical-hole photonic crystal fibers. Opt. Lett. 26, 229–231 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    L. Wang, D. Yang, Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core. Opt. Express. 15(14), 8892–8897 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    F. Beltrán-Mejía, G. Chesini, E. Silvestre et al., Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes. Opt. Lett. 35(4), 544–546 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    X.S. Liu et al., Dual-core antiresonant hollow core fibers. Opt. Express 24, 17453–17458 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    T.Y. Yang et al., High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Express 23, 8329–8337 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Modern Optical Systems, School of Optical-Electrical and Computer Engineering, Engineering Research Center of Optical Instruments and Systems, Ministry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations