Advertisement

Applied Physics B

, 125:155 | Cite as

Thermally induced optical nonlinearity in colloidal alloy nanoparticles synthesized by laser ablation

  • M. AbdullahEmail author
  • H. Bakhtiar
  • M. S. A. Aziz
  • G. Krishnan
  • N. A. M. Ropi
  • N. Kasim
  • N. N. Adnan
Article
  • 81 Downloads

Abstract

Colloidal suspension of alloy nanoparticles has been prepared and their third-order nonlinear optical response was investigated by means of the Z-scan technique, employing 532 nm continuous wave laser excitation. Alloys colloidal suspension of industrial grade brass, aluminium, and copper was prepared via laser ablation in liquid technique. FESEM analysis reveals the particles size of less than 102.33 nm on average. The magnitude and sign of the nonlinear refraction, n2 and nonlinear absorption, β were determined. It was observed from the closed aperture Z-scan that all the suspensions exhibited a self-focusing effect with a negative nonlinear refractive index, n2, attributed to thermal lensing effect. Colloids of brass possess highest n2 followed by copper and aluminium suspension, attributed to the thermally agitated process whereby heat is transferred into non-local region of the propagation axis. Open Z-scan results revealed that the brass suspension exhibited saturable absorption (SA) with significant negative β value. Aluminium and copper alloy NPs suspension rather shows reverse saturable absorption with a positive β value. These materials were found to exhibit significant nonlinear refraction and nonlinear absorption behaviour, making them possible candidates for photonic and/or optoelectronic applications, especially with low powered continuous wave laser excitation.

Notes

Acknowledgements

The authors would like to thank the Malaysia Ministry of Education and Universiti Teknologi Malaysia for their financial support through Tier 1 with vote 18H67. Special thanks also to Universiti Teknologi Malaysia for the postdoctoral scheme under vote number 04E08 for the first author.

References

  1. 1.
    A.R. Sadrolhosseini, A.S.M. Noor, N. Faraji, A. Kharazmi, M.A. Mahdi, J. Nanomater. 2014, 962917 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Sarkhosh, N. Mansour, Laser Phys. 25, 65404 (2015)CrossRefGoogle Scholar
  3. 3.
    E. Kirubha, P.K. Palanisamy, Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 045006 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    J.T. Seo, Q. Yang, W.-J. Kim, J. Heo, S.-M. Ma, J. Austin, W.S. Yun, S.S. Jung, S.W. Han, B. Tabibi, D. Temple, Opt. Lett. 34, 307 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    N. Venkatram, D.N. Rao, M.A. Akundi, Opt. Express 13, 867 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    J.L.J. Pérez, R. Gutiérrez-Fuentes, J.F.S. Ramírez, O.U.G. Vidal, D.E. Téllez-Sánchez, Z.N.C. Pacheco, A.C. Orea, J.A.F. García, Adv. Nanoparticles 02, 223 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.H. Wang, Y.M. Wang, J.D. Lu, L.L. Ji, R.G. Zang, R.W. Wang, Opt. Commun. 283, 486 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    H.P.P. Li, B. Liu, C.H.H. Kam, Y.L.L. Lam, W.X.X. Que, L.M.M. Gan, C.H.H. Chew, G.Q.Q. Xu, Opt. Mater. (Amst). 14, 321 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Y.H. Wang, Y.M. Wang, C.J. Han, J.D. Lu, L.L. Ji, R.W. Wang, Phys. B Condens. Matter 405, 2848 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    K.K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H.S. Nagaraja, P. Poornesh, D. Kekuda, Opt. Mater. (Amst). 35, 431 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Y.X. Zhang, Y.H. Wang, RSC Adv. 7, 45129 (2017)CrossRefGoogle Scholar
  12. 12.
    O. Sánchez-Dena, O. Baldovino-Pantaleón, S. Almaguer-Valenzuela, J.A. Reyes-Esqueda, E.V. García-Ramírez, Opt. Express 24, A154 (2015)Google Scholar
  13. 13.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)CrossRefGoogle Scholar
  14. 14.
    T. Seto, K. Koga, H. Akinaga, F. Takano, T. Orii, M. Hirasawa, J. Nanoparticle Res. 8, 371 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J. Zhang, G. Chen, D. Guay, M. Chaker, D. Ma, Nanoscale 6, 2125 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J. Zhang, D.N. Oko, S. Garbarino, R. Imbeault, M. Chaker, A.C. Tavares, D. Guay, D. Ma, J. Phys. Chem. C 116, 13413 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Jakobi, S. Petersen, A. Menéndez-Manjón, P. Wagener, S. Barcikowski, Langmuir 26, 6892 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Neumeister, J. Jakobi, C. Rehbock, J. Moysig, S. Barcikowski, Phys. Chem. Chem. Phys. 16, 23671 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Scaramuzza, S. Agnoli, V. Amendola, Phys. Chem. Chem. Phys. 17, 28076 (2015)CrossRefGoogle Scholar
  20. 20.
    F. Cverna, ASM Ready Reference: Thermal Properties of Metals, 1st edn. (ASM International, Ohio, 2002)Google Scholar
  21. 21.
    V. Viswanath, S.S. Nair, G. Subodh, C.I. Muneera, SN Appl. Sci. 1, 43 (2019)CrossRefGoogle Scholar
  22. 22.
    S.J. Mathews, S.C. Kumar, L. Giribabu, S.V. Rao, Mater. Lett. 61, 4426 (2007)CrossRefGoogle Scholar
  23. 23.
    Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, Y. Song, Opt. Commun. 251, 429 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    A. Ajami, W. Husinsky, B. Svecova, S. Vytykacova, P. Nekvindova, J. Non. Cryst. Solids 426, 159 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    T. Jia, T. He, P. Li, Y. Mo, Y. Cui, Opt. Laser Technol. 40, 936–940 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nano Optoelectronics Research and Technology (INOR)Universiti Sains Malaysia (USM)GelugorMalaysia
  2. 2.Laser Center, Ibnu Sina for Scientific and Industrial ResearchUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Department of Physics, Faculty of SciencesUniversiti Teknologi MalaysiaJohor BahruMalaysia
  4. 4.Department of Science, Faculty of Science, Technology and Human DevelopmentUniversiti Tun Hussein OnnBatu PahatMalaysia

Personalised recommendations