Advertisement

Applied Physics B

, 125:162 | Cite as

Chromatic dispersion-free diffraction grating based single-shot autocorrelator

  • Shunxing Tang
  • Xiuqing JiangEmail author
  • Yajing Guo
  • Li Zhou
  • Lin Yang
  • Baoqiang Zhu
  • Jianqiang Zhu
Article

Abstract

A chromatic dispersion-free diffraction-grating single-shot autocorrelator (grating-SSA) is proposed. The grating-SSA is described theoretically, and its performance is experimentally characterized. The results demonstrate that the SSA measurement range can be expanded as expected, and the measurement accuracy is the same as that of a conventional SSA. The measurement range of an optimized design can be expanded to almost three times as wide as that of the same size BBO-based conventional SSA, achieving a 100 ps measurement range for an 30 mm diameter non-linear crystal.

Notes

Acknowledgements

This work was part funded by the Youth Innovation Promotion Association CAS (China) under Grant number 1011X04.

References

  1. 1.
    R.N. Gyuzalian, S.B. Sogomonian, Z. Gy, Opt. Commun. 29, 239–242 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    F. Salin, P. Georges, G. Roger, A. Brun, Appl. Opt. 26, 4528–4531 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    R. Trebino, D.J. Kane, J. Opt. Soc. Am. A 10, 1101–1111 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    R. Trebino, D.J. Kane, Opt. Lett. 18, 823–825 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    D.J. Kane, R. Trebino, IEEE J. Quantum Electron. 29, 571–579 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, Boston, 2002)Google Scholar
  7. 7.
    C. Iaconis, I.A. Walmsley, Opt. Lett. 23, 792–794 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    C. Iaconis, I.A. Walmsley, IEEE J. Quantum Electron. 35, 501–509 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    P. O’Shea, M. Kimmel, X. Gu, R. Trebino, Opt. Lett. 26, 932–934 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    C. Zhou, E. Dai, G. Li, Opt. Express 13, 6145 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    J. Ma, P. Yuan, J. Wang, G. Xie, H. Zhu, L. Qian, High Power Laser Sci. Eng. 6(4), e61 (2018)CrossRefGoogle Scholar
  12. 12.
    S.M. Saltiel, K.A. Stankov, Appl. Phys. B 35, 45–48 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    K. Oba, X. Zhang, P.C. Sun, Y. Mazurenko, Y. Fainman, Proc. SPIE 3466, 185–195 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    I. Jovanovic, C. Brown, C. Haefner, et al., in Quantum Electronics and Laser Science Conference (Optical Society of America, 2007) (p. JThD137).Google Scholar
  15. 15.
    S.M. Saltiel, K.A. Stankov, P.D. Yankov, L.I. Telegin, Appl. Phys. B 40, 25–27 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    S. Tang, L. Yang, X. Jiang, Y. Guo, B. Zhu., in The 3rd International Symposium on HPLSE, Suzhou, Jiangsu, April 9–13 (2018)Google Scholar
  17. 17.
    G. Figueira, L. Cardoso, N. Lopes, J. Wemans, J. Opt. Soc. Am. B 22, 2709–2714 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    X. Zhang, Z. Xu, X. Wang, Chin. J. Lasers 29(2), 127–130 (2002)ADSGoogle Scholar
  19. 19.
    X. Kong, S. Yan, J. Yu, D. Liu, X. Ouyang, B. Zhu, J. Zhu, Chin. J. Lasers 44(11), 1104001 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations