Advertisement

Applied Physics B

, 125:156 | Cite as

Discrimination of chemicals via refractive index by EF-FLRD

  • Alim Yolalmaz
  • Mehmet Fatih Danışman
  • Okan EsenturkEmail author
Article
  • 85 Downloads
Part of the following topical collections:
  1. Optical Nanofibers and Microresonators

Abstract

Design and application of an evanescent field fiber loop ring-down (EF-FLRD) spectroscopy system for discrimination of chemicals via their refractive indices are presented. To our knowledge, this is the first system that utilizes visible light. The system employs a broadband laser source at 800 nm at 80 MHz whose pulses were selectively picked by a Pockels cell to eliminate overlap of the pulses in the cavity. Chemically etched fiber region was used as a sensing element and eight organic solvents were discriminated compared to the reference sample mainly due to their differences in refractive indices. The solvent dielectric constants cover a broad range from 2 (of decane) to 80 (of water) at 20 °C (dielectric constants are obtained from Solvent Polarities, http://murov.info/orgsolvents.htm#TABLE2, 2019). Prior to the measurements, optimization of data collection protocols, etched sensing region geometry, and the sample compartment configuration was achieved. The results show that solutions with a refractive index unit difference of 0.0018 (acetone–ethanol couple) were able to be differentiated as the lowest difference and the detectable lowest loss was calculated to be 1.10 × 10−5 dB. A single measurement takes less than 1 min (which is limited by the control system) with the lowest error of 0.37% (for acetone) and the highest error of 1.71% (for ethanol) showing real-time measurement possibility. Simplicity and unique design of the set-up is a promising first step in construction/utilization of EF-FLRD systems for trace chemical detection in the visible range.

Graphic abstract

Notes

Acknowledgements

This study is financially supported by The Scientific and Technological Research Council of Turkey Grant No. 212T079 and funded in part by METU Scientific Research Project Coordinator.

Author contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Supplementary material

340_2019_7261_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1104 kb)

References

  1. 1.
    M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing, M.N.R. Ashfold, J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998)CrossRefGoogle Scholar
  2. 2.
    C. Wang, S.T. Scherrer, Opt. Lett. 29(4), 352–354 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    R. Li, C. Tian, Y. Zhang, J. Zhang, X. Chen, S. Liu, J. Light. Technol. 33(17), 3607–3612 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    C. Wang, M. Kaya, C. Wang, J. Biomed. Opt. 17(3), 037004 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    X. Zhou, X. Wang, K. Chen, X. Mao, W. Peng, Q. Yu, Opt. Commun. 333, 105–108 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    E. Austin, A. van Brakel, M.N. Petrovich, D.J. Richardson, Sens. Actuators B Chem. 139(1), 30–34 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, L. Bai, Q. Wang, Opt. Commun. 309, 328–332 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A. Yolalmaz, F. Hanifehpour Sadroud, M.F. Danışman, O. Esenturk, Opt. Commun. 396 (2017)Google Scholar
  9. 9.
    M. Jiang, W. Zhang, Q. Zhang, Y. Liu, B. Liu, Opt. Commun. 283(2), 249–253 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    T.K. Gangopadhyay, A. Giorgini, A. Halder, M. Pal, M.C. Paul, S. Avino, G. Gagliardi, Sens. Actuators B Chem. 206, 327–335 (2015)CrossRefGoogle Scholar
  11. 11.
    R.S. Brown, I. Kozin, Z. Tong, R.D. Oleschuk, H.-P. Loock, J. Chem. Phys. 117(23), 10444–10447 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    J.V. Ittiarah, S. Sidhik, T.K. Gangopadhyay, Sens. Actuators A Phys. 223, 61–66 (2015)CrossRefGoogle Scholar
  13. 13.
    P. Sahay, M. Kaya, C. Wang, Sensors 13(1), 39–57 (2012)CrossRefGoogle Scholar
  14. 14.
    A.W. Snyder, J.D. Love, Optical Waveguide Theory (Springer, Boston, 1984)CrossRefGoogle Scholar
  15. 15.
    N.J. Harrick, K.H. Beckmann, Characterization of Solid Surfaces (Springer, Boston, 1974), pp. 215–245CrossRefGoogle Scholar
  16. 16.
    C. Wang, C. Herath, Meas. Sci. Technol. 21, 085205 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    W. Di, Z. Yong, W. Qi, IEEE Photon. Technol. Lett. 27(17), 1802–1805 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    S.-M. Tseng, C.-L. Chen, Appl. Opt. 31(18), 3438 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    H. Alali, C. Wang, Appl. Opt. 55(31), 8938 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    C. Herath, C. Wang, M. Kaya, D. Chevalier, J. Biomed. Opt. 16(5), 050501 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    T. Shen, Y. Feng, B. Sun, X. Wei, Appl. Opt. 55(4), 673 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    F. Ye, C. Zhou, B. Qi, L. Qian, B Sens. Actuators Chem. 184, 150–155 (2013)CrossRefGoogle Scholar
  23. 23.
    R.-Q. Lv, Y. Zhao, M.-C. Liu, Instrum Sci. Technol. 44(5), 547–557 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Sharma, M.I.M. Abdul Khudus, S.U. Alam, S. Bhattacharya, D. Venkitesh, G. Brambilla, Opt. Commun. 407, 186–192 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    N. Ni, C.C. Chan, L. Xia, P. Shum, IEEE Photon. Technol. Lett. 20(16), 1351–1353 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    W. Yan, Q. Han, Y. Chen, H. Song, X. Tang, T. Liu, Sens. Actuators B Chem. 255, 2018–2022 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Silva, O. Frazão, Opt. Laser Technol. 91, 112–115 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A. Yolalmaz, Utilization of Fiber Loop Ring Down Technique for Sensing Applications (Middle East Technical University, Ankara, 2017)Google Scholar
  29. 29.
    M.N. Polyanskiy, Refractive Index Database. http://refractiveindex.info. Last Accessed 06 May 2019
  30. 30.
    J.M. Porter, J.B. Jeffries, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 110(18), 2135–2147 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    M. Kaya, C. Wang, in AIP Conference Proceedings (2017), p 020027Google Scholar
  32. 32.
    G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, M. Xuan, IEEE Photon. Technol. Lett. 24(8), 658–660 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Solvent Polarities. http://murov.info/orgsolvents.htm#TABLE2. Accessed 18 June 2019 (2019)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Natural and Applied Science, Micro and Nanotechnology ProgramMETUAnkaraTurkey
  2. 2.Faculty of Arts and Sciences, Chemistry DepartmentMETUAnkaraTurkey

Personalised recommendations