Applied Physics B

, 125:111 | Cite as

Laser reinforcement of light industrial part surface with synthetic amorphous/nanocrystalline composites

  • Jianing LiEmail author
  • Molin Su
  • Xiaolin Wang
  • Kegao Liu
  • Feihu Shan
  • Qi Liu


Ultrafine nanocrystals (UNs) and amorphous phases reinforced composites were fabricated on the bearing substrate produced of the titanium alloy by mean of the laser cladding (LC) of Stellite-Ceramics mixed powders, which improved the wear resistance of the substrate surface. An aim of this study is to investigate the microstructural characterization, phases constitute and wear behavior of such laser clad composites (LCCs). Test results indicated that the grain size/orientation in the different areas maintained highly consistent in middle region of the StelliteSF 12-NB-Sb LCCs, also three distinctive regions with varies equiaxed crystals in sizes can be distinguished, which showed a strong (101) orientation; the various types of phases were obtained for the bottom-composites due to the dilution effect and the extreme rapid cooling rate of the bottom-pool; the amorphous phases could not be free to grow up during crystallization process due to suppressions of UNs, resulting in the nanosize microstructure. To have a quantitative understanding of strengthening effects, this paper has provided laser-induced related theoretical basis to fabricate the ceramics reinforced composites on the light industrial part.



This work was supported by National Natural Science Foundation of China (Grant No. 51505257) and project ZR2019YQ25 supported by Shandong Provincial Natural Science Foundation.


  1. 1.
    D.D. Gu, G.B. Meng, C. Li, W. Meiners, R. Poprawe, Selective laser melting of TiC/Ti bulk nanocomposites: influence of nanoscale reinforcement. Scr. Mater. 67(2), 185–188 (2012)CrossRefGoogle Scholar
  2. 2.
    Y.B. Hu, W.L. Cong, X.L. Wang, Y.C. Li, F.D. Ning, H. Wang, Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening. Compos. Part B Eng. 133, 91–100 (2018)CrossRefGoogle Scholar
  3. 3.
    W. Li, M. Li, Y. Yang, Q.S. Wei, D.S. Cai, J. Liu, C. Yan, Y.S. Shi, Enhanced compressive strength and tailored microstructure of selective laser melted Ti–46.5Al–2.5Cr–2Nb–0.5Y alloy with different boron addition. Mater. Sci. Eng. A 731, 209–219 (2018)CrossRefGoogle Scholar
  4. 4.
    C. Peng, S.Y. Zhang, Z.Q. Sun, L. Ren, K. Yang, Effect of annealing temperature on mechanical and antibacterial properties of Cu-bearing titanium alloy and its preliminary study of antibacterial mechanism. Mater. Sci. Eng., C 93, 495–504 (2018)CrossRefGoogle Scholar
  5. 5.
    H.F. Qin, Z.C. Ren, J.Y. Zhao, C. Ye, G.L. Doll, Y.L. Dong, Effects of ultrasonic nanocrystal surface modification on the wear and micropitting behavior of bearing steel in boundary lubricated steel-steel contacts. Wear 392–393, 29–38 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Song, Y.H. Liu, Z.H. Liao, S. Wang, R. Tyagi, W.Q. Liu, Wear studies on ZrO2-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4 V. Mater. Sci. Eng., C 69, 985–994 (2016)CrossRefGoogle Scholar
  7. 7.
    J.N. Li, C.Z. Chen, D.G. Wang, W. Li, Microstructures and wear properties of YPSZ/CeO2 reinforced composites deposited by laser cladding. Compos. Part B Eng. 43(3), 896–901 (2012)CrossRefGoogle Scholar
  8. 8.
    Y.J. Yu, J.S. Zhou, J.M. Chen, H.D. Zhou, C. Guo, L.Q. Wang, L.B. Yang, Preparation, microstructure and tribological behavior of laser cladding NiAl intermetallic compound coatings. Wear 274–275, 298–305 (2012)CrossRefGoogle Scholar
  9. 9.
    Y.Z. Zhang, J.C. Sun, R. Vilar, Characterization of (TiB + TiC)/TC4 in situ titanium matrix composites prepared by laser direct deposition. J. Mater. Process. Technol. 211, 597–601 (2011)CrossRefGoogle Scholar
  10. 10.
    J.X. Yang, Z.Y. Xiao, X.H. Miao, X.B. Wang, F. Yang, The effect of Ti additions on the microstructure and magnetic properties of laser clad FeNiCr/60%WC coatings. Int. J. Refract. Met. Hard Mater. 52, 6–11 (2015)CrossRefGoogle Scholar
  11. 11.
    Q.L. Wu, W.G. Li, N. Zhong, G. Wu, H.S. Wang, Microstructure and wear behavior of laser cladding VC–Cr7C3ceramic coating on steel substrate. Mater. Des. 49, 10–18 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Wang, F. Qiu, Q. Zou et al., Microstructures and tensile properties of nano-sized SiCp/Al–Cu composites fabricated by semisolid stirring assisted with hot extrusion. Mater. Charact. 131, 195–200 (2017)CrossRefGoogle Scholar
  13. 13.
    Y.X. Wang, Y. Ju, S.H. Wei et al., Mechanical properties and microstructure of Au–Ni–TiO2 nano-composite coatings. Mater. Charact. 102, 189–194 (2015)CrossRefGoogle Scholar
  14. 14.
    J.N. Li, C.Z. Chen, H.J. Yu, S.L. Gong, Physical properties and formation mechanism of copper/glass modified laser nanocrystals-amorphous reinforced coatings. J. Phys. Chem. C 117, 4568–4573 (2013)CrossRefGoogle Scholar
  15. 15.
    D. Roy, S.S. Singh, B. Basu, W. Lojkowski, R. Mitra, I. Manna, Studies on wear behavior of nano-intermetallic reinforced Al-base amorphous/nanocrystalline matrix in situ composite. Wear 266, 1113–1118 (2009)CrossRefGoogle Scholar
  16. 16.
    D.T.A. Matthews, V. Ocelik, JThM de Hosson, Tribological and mechanical properties of high power laser surface-treated metallic glasses. Mater. Sci. Eng., A 471, 155–164 (2007)CrossRefGoogle Scholar
  17. 17.
    R.F. Li, Z.G. Li, Y.Y. Zhu, K. Qi, Structure and corrosion resistance properties of Ni–Fe–B–Si–Nb amorphous composite coatings fabricated by laser processing. J. Alloys Compd. 580, 327–331 (2013)CrossRefGoogle Scholar
  18. 18.
    J.N. Li, C.Z. Chen, Q.S. He, Influence of Cu on microstructure and wear resistance of TiC/TiB/TiN reinforced composite coating fabricated by laser cladding. Mater. Chem. Phys. 133, 741–745 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Y.S. Tian, Growth mechanism of the tubular TiB crystals in situ formed in the coatings laser-borided on Ti–6Al–4 V alloy. Mater. Lett. 64, 2483–2486 (2010)CrossRefGoogle Scholar
  20. 20.
    D.Q. Wan, G.C. Yang, L. Lin, Z.G. Feng, Equilibrium and non-equilibrium microstructures of Mg–Zn–Y quasicrystal alloy. Mater. Lett. 62, 1711–1714 (2008)CrossRefGoogle Scholar
  21. 21.
    H.Y. Tao, J.Q. Lin, Enhancing microwave absorption of metals by femtosecond laser induced micro/nano surface structure. Opt. Lasers Eng. 114, 31–36 (2019)CrossRefGoogle Scholar
  22. 22.
    C. Huang, Y.Z. Zhang, R. Vilar, J.Y. Shen, Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4 V substrate. Mater. Des. 41, 338–343 (2012)CrossRefGoogle Scholar
  23. 23.
    W.J. Wang, J. Hu, J. Guo, Q.Y. Liu, M.H. Zhu, Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials. Wear 311(1–2), 130–136 (2014)CrossRefGoogle Scholar
  24. 24.
    J.N. Li, C.Z. Chen, T. Squartini, Q.S. He, A Study on wear resistance and microcrack of the Ti3Al/TiAl +TiC ceramic layer deposited by laser cladding on Ti–6Al–4 V alloy. Appl. Surf. Sci. 257(5), 1550–1555 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    F. Weng, C.Z. Chen, J.L. Liu, Microstructure and property of composite coatings on titanium alloy deposited by laser cladding with Co42 + TiN mixed powders. J. Alloys Compd. 686, 74–81 (2016)CrossRefGoogle Scholar
  26. 26.
    A.N. Basu, S.P. Samant, J.Dutta Harimkar, I. Majumdar, N.B.Dahotre Manna, Laser surface coating of Fe–Cr–Mo–Y–B–C bulk metallic glass composition on AISI 4140 steel. Surf. Coat. Technol. 202, 2623–2631 (2008)CrossRefGoogle Scholar
  27. 27.
    J.Dutta Manna, B.Ramesh Majumdar, S. Chandra, N.B.Dahotre Nayak, Laser surface cladding of Fe–B–C, Fe–B–Si and Fe–BC–Si–Al–C on plain carbon steel. Surf. Coat. Technol. 201, 434–440 (2006)CrossRefGoogle Scholar
  28. 28.
    M. Gupta, S. Hussain, A.Kumar Misra, A.Mandal Das, Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite. Opt. Lasers Eng. 105, 159–172 (2018)CrossRefGoogle Scholar
  29. 29.
    J. Majumdar, I. Manna, Laser material processing. Inter. Mater. Rev. 56, 341–388 (2011)CrossRefGoogle Scholar
  30. 30.
    A.H. Taghvaei, M. Stoica, M.S. Khoshkhoo, J. Thomas, G. Vaughan, K. Janghorban, J. Eckert, Microstructure and magnetic properties of amorphous/nanocrystalline Co40Fe22Ta8B30 alloy produced by mechanical alloying. Mater. Chem. Phys. 134, 1214 (2012)CrossRefGoogle Scholar
  31. 31.
    J.N. Li, S.L. Gong, M. Sun, F.H. Shan, X.C. Wang, S. Jiang, Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film. Phys. B 428, 73–77 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 3849–3860 (2012)CrossRefGoogle Scholar
  33. 33.
    E. Besozi, D. Dellasega, A. Pezzoli, C. Conti, M. Passoni, M.G. Beghi, Amorphous, ultra-nano- and nano-crystalline tungsten-based coatings grown by Pulsed Laser Deposition: mechanical characterization by Surface Brillouin Spectroscopy. Mater. Des. 106, 14–21 (2016)CrossRefGoogle Scholar
  34. 34.
    C.Y. Cui, J.D. Hu, Y.H. Liu, K. Gao, Z.X. Guo, Formation of nano-crystalline and amorphous phases on the surface of stainless steel by Nd:YAG pulsed laser irradiation. Appl. Surf. Sci. 254, 6779–6782 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    J.N. Li, W. Craeghs, C.N. Jing, S.L. Gong, F.H. Shan, Microstructure and physical performance of laser-induction nanocrystals modified high-entropy alloy composites on titanium alloy. Mater. Des. 117, 363–370 (2017)CrossRefGoogle Scholar
  36. 36.
    W.Q. Wu, R. Zhou, B.Q. Wei, S. Ni, Y. Liu, M. Song, Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting. Mater. Charact. 144, 605–610 (2018)CrossRefGoogle Scholar
  37. 37.
    U. Trdan, M. Skarba, J. Grum, Laser shock peening effect on the dislocation transitions and grain refinement of Al–Mg–Si alloy. Mater. Charact. 97, 57–68 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jianing Li
    • 1
    Email author
  • Molin Su
    • 1
  • Xiaolin Wang
    • 1
    • 2
  • Kegao Liu
    • 1
  • Feihu Shan
    • 3
  • Qi Liu
    • 3
  1. 1.School of Materials Science and EngineeringShandong Jianzhu UniversityJinanChina
  2. 2.Institute for Superconducting and Electronic Materials, Australian Institute for Innovative MaterialsThe University of WollongongNorth WollongongAustralia
  3. 3.Science and Technology on Power Beam Processes Laboratory, Beijing Key Laboratory of High Power Beam Additive Manufacturing Technology and Equipment, Aeronautical Key Laboratory for Additive Manufacturing TechnologiesAVIC Manufacturing Technology InstituteBeijingChina

Personalised recommendations