Applied Physics B

, 125:110 | Cite as

Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field

  • M. Akhtar
  • A. Jabbar
  • N. AhmedEmail author
  • S. Mahmood
  • Z. A. Umar
  • R. Ahmed
  • M. A. Baig


The purpose of the present study was to improve the detection limits of copper and lead in the soil samples by coupling Laser-Induced Plasma Spectrometry (LIPS) with an external magnetic field. The laser-induced plasma was generated using an Nd:YAG laser (532 nm) and the emission spectra were registered using a set of four spectrometers covering the wavelength region from 250 to 870 nm. The application of external magnetic field (0.7 T) perpendicular to the propagation of the plasma plume increases the plasma temperature, electron density, and plasma emission intensity. This enhancement in the plasma parameters is attributed to the plasma confinement. The detection limit of Pb and Cu has been improved from 12 ppm to 4.1 ppm and from 3.9 ppm to 1.4 ppm by applying magnetic field. The plasma temperature and electron number density decays slowly along the plasma expansion axis in the presence of external magnetic field.



We are grateful to the Pakistan Academy of Sciences and National Centre for Physics for the financial assistance to acquire the necessary laboratory equipment.


  1. 1.
    T. Kobayashi, H. Akiyoshi, M. Tachiki, Development of prominent PLD suitable of high quality and low temperature film growth. Appl. Surf. Sci. 197, 294–303 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    P.K. Pandey, R. Thareja, Surface nano-structuring of laser ablated copper in ambient gas atmosphere and a magnetic field. Phys. Plasmas 18, 033505 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    S.S. Harilal, B.O. Shay, M.S. Tillack, Debris mitigation in a laser-produced tin plume using a magnetic field. J. Appl. Phys. 98, 036102 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    C. Ye, G.J. Cheng, S. Tao, B.X. Wu, Magnetic field effects on laser drilling. J. Manuf. Sci. Eng. 135, 061020 (2013)CrossRefGoogle Scholar
  5. 5.
    T. Ishigaki, Synthesis of functional oxide nanoparticles through RF thermal plasma processing. Plasma Chem. Plasma Process. 37, 783–804 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Joshi, A. Kumar, R.K. Singh, V. Prahlad, Effect of a transverse magnetic field on the plume emission in laser-produced plasma: an atomic analysis. Spectrochim. Acta Part B 65, 415–419 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S.S. Harilal, M.S. Tillack, B.O. Shay, C.V. Bindhu, F. Najmabadi, Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys. Rev. E 69, 26413 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Li, C.H. Hu, H.Z. Zhang, Z.K. Jiang, Z.S. Li, Optical emission enhancement of laser-produced copper plasma under a steady magnetic field. Appl. Optics. 48, 105–110 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A. Neogi, R. Thareja, Instabilities in laser-produced carbon plasma expanding in a non-uniform magnetic field. Appl. Phys. B 72, 231–235 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    S. Bashir, N. Farid, K. Mahmood, M.S. Rafique, Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd. Appl. Phys. A 107, 203–212 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    P.K. Pandey, R. Thareja, Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field. J. Appl. Phys. 109, 074901 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Shen, T. Lu, H. Gebre, Y. Ling, J. Han, Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys. 100, 053303 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    A. Kumar, R.K. Singh, H. Joshi, Effect of transverse magnetic field on the laser-blow-off plasma plume emission in the presence of ambient gas. Spectrochim. Acta Part B 66, 444–450 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A. Kumar, H.C. Joshi, V. Prahlad, R.K. Singh, Effect of magnetic field on laser-blow-off plasma plume: structured temporal emission profile. Phys. Lett. A 374, 2555–2560 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    K.S. Singh, A.K. Sharma, Multi-structured temporal behavior of neutral copper transitions in laser-produced plasma in the presence of variable transverse static magnetic field. Phys. Plasmas 23, 013304 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    L.I. Cheng, G. Xum, S. Chao, L. Jingquan, Spectral enhancement of laser-induced breakdown spectroscopy in external magnetic field. Plasma Sci. Technol. 17, 919–922 (2015)CrossRefGoogle Scholar
  17. 17.
    M.S. Rafique, M. Khaleeq-Ur-Rahman, I. Riaz, R. Jalil, N. Farid, External magnetic field effect on plume images X-ray emission from a nanosecond laser produced plasma. Laser Part. Beams 26, 217–224 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    G.S. Senesi, G. Baldassarre, N. Senesi, B. Radina, Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39, 343–377 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    K. Thurmer, E. Williams, J. Reutt-Robey, Autocatalytic oxidation of lead crystallite. Surf. Sci. 29, 2033–2035 (2002)Google Scholar
  20. 20.
    V.S. Burakov, N.V. Tarasenko, M.I. Nedelko, V.A. Kononov, N.N. Vasilev, S.N. Isakov, Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy. Spectrochimica Acta Part B 64, 141–146 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    R.X. Yi, L.B. Guo, X.H. Zou, J.M. Li, Z.Q. Hao, X.Y. Yang, X.Y. Li, X.Y. Zeng, Combined with standard addition method. Opt. Express 24, 2607–2618 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    V.K. Unnikrishnan, R. Nayak, K. Aithal, V.B. Kartha, C. Santhosh, G.P. Gupta, B.M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS). Anal. Methods 5(5), 1294–1300 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Akhtar, A. Jabbar, S. Mehmood, N. Ahmed, R. Ahmed, M.A. Baig, Magnetic field enhanced detection of heavy metals in soil using lase induced breakdown spectroscopy. Spectrochimica Acta Part B 148, 143–151 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    N. Ahmed, Z.A. Umar, R. Ahmed, M.A. Baig, On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry. Spectrochimica Acta Part B 136, 39–44 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Q. Abbass, N. Ahmed, R. Ahmed, M.A. Baig, A comparative study of calibration free methods for the elemental analysis by laser induced breakdown spectroscopy. Plasma Chem. Plasma Process. 36, 1287–1299 (2016)CrossRefGoogle Scholar
  26. 26.
    L.B. Guo, W. Hu, B.Y. Zhang, X.N. He, C.M. Li, Y.S. Zhou, Z.X. Cai, X.Y. Zeng, Y.F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement. Opt. Express 19(15), 14067–14075 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    A. Roy, S.S. Harilal, S.M. Hassan, A. Endo, T. Mocek, A. Hassanein, Collimation of laser-produced plasmas using axial magnetic field. Laser Part. Beams 33, 175–182 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    H.R. Griem, Principles of plasma spectroscopy (Cambridge University Press, New York, 1997)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, Q.S. Ahmad, Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma. Appl. Phys. B Lasers Opt. 122, 1–10 (2016)CrossRefGoogle Scholar
  31. 31.
    K.S. Singh, A.K. Sharma, spatially resolved behavior of laser-produced copper plasma along expansion direction in the presence of static uniform magnetic field. Phys. Plasmas 23, 122104 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    S. Mahmood, M. Akhtar, A. Jabbar, J. Iqbal, M.A. Baig, Elemental analysis of stones using laser induced breakdown spectroscopy. Plasma Sci. IEEE Trans. 43, 2636–2641 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    M.A. Alonso, Experimental determination of the Stark widths of Pb I spectra lines in a laser-induced plasma. Spectrochimica Acta Part B 63, 598 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    I.H. Hutchinson, Principles of plasma diagnostics (Cambridge University Press, New York, 2002)CrossRefGoogle Scholar
  35. 35.
    R.W.P. McWhirter, R.H. Huddlestone, S.L. Leonard, Spectral intensities in plasma diagnostic techniques (Academic Press, New York, 1965)Google Scholar
  36. 36.
    D.W. Koopman, High beta effects and anomalous diffusion in plasma expanding into magnetic field”. Phys. Fluids 19, 670–674 (1976)ADSCrossRefGoogle Scholar
  37. 37.
    F.F. Chen, Introduction to plasma physics (Plenum, New York, 1974)Google Scholar
  38. 38.
    V.N. Rai, A.K. Rai, F.Y. Yueh, J.P. Singh, Optical emission from laser-induced break down plasma of solid and liquid samples in the presence of a magnetic field. Appl. Opt. 42, 2085–2093 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    S. Sudo, T. Sekiguchi, K.N. Sato, Re-thermalization and flow of laser-produced plasmas in a uniform magnetic field. J. Phys. D Appl. Phys. 11, 389–407 (1978)ADSCrossRefGoogle Scholar
  40. 40.
    S.S. Harilal, G.V. Miloshevsky, P.K. Diwakar, N.L. Lahaye, A. Hassanein, Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas 19, 083504 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    A.S. Zakuskin, A.M. Popov, N.B. Zorov, T.A. Labutin, Confinement of laser plasma by shock waves for increasing signal intensity in spectrochemical determination of trace elements in ores. Tech. Phys. Lett. 44, 73–76 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    G.S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. Depascale, T.M. Miano, M. Capitally, Heavy metal concentration in soils as determined by laser induced breakdown spectroscopy (LIBS) with special emphasis on chromium. Environ. Res. 109, 413–420 (2009)CrossRefGoogle Scholar
  43. 43.
    N. Ahmed, R. Ahmed, M.A. Baig, Analytical analysis of different karats of gold using laser induced breakdown spectroscopy (LIBS) and laser ablation time of flight mass spectrometer (LA-TOF-MS). Plasma Chem. Plasma Process. 38, 207–222 (2018)CrossRefGoogle Scholar
  44. 44.
    F.H. Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochimica Acta Part B 56, 933–945 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Centre for PhysicsQuaid-i-Azam University CampusIslamabadPakistan
  2. 2.Department of PhysicsMirpur University of Science and Technology (MUST)MirpurPakistan
  3. 3.Department of PhysicsUniversity of Azad Jammu and KashmirMuzaffarabadPakistan

Personalised recommendations