Advertisement

Applied Physics B

, 125:120 | Cite as

Characterization of the spectral signature of dual-fuel combustion luminosity: implications for evaluation of natural luminosity imaging

  • Aleš SrnaEmail author
  • Rolf Bombach
  • Kai Herrmann
  • Gilles Bruneaux
Article
  • 62 Downloads

Abstract

N-dodecane pilot-ignited lean-premixed natural-gas combustion in a rapid compression–expansion machine is investigated. The aim of this study is to characterize the combustion spectral footprint: identify the main sources of natural luminosity, characterize the temporal brightness evolution, and provide guidance for the evaluation of natural luminosity imaging acquisitions. Natural luminosity spectra in the range of 280–610 nm are acquired, 1D-resolved along the injector axis, using an imaging spectrograph and intensified high-speed camera. Four significant contributions to the natural luminosity are identified: Soot, OH* and CH* chemiluminescence, as well as overlapping broadband chemiluminescence of CO2*, CHO* and CH2O* species. The CH* chemiluminescence can only be detected at ignition and during the pilot-fuel combustion period. Similarly, first OH* and broadband luminosity are also detected at ignition. However, this luminosity additionally increases late in the cycle, when methane, enriched with diluted pilot-fuel, forms an extensive burnt zone with close-to-stoichiometry conditions. For the ignition delay detection, imaging of broadband luminosity has to be recommended since at ignition it shows a higher rise-rate than the OH* chemiluminescence. It is shown that, after ignition, in dual-fuel combustion, the coupling between the natural luminosity and heat release-rate is too weak to extract useful information.

Notes

Acknowledgements

Financial support from CCEM (Project #803 “ScheDual”) and the Swiss Federal Office of Energy (Grant SI/501123-01) is gratefully acknowledged.

References

  1. 1.
    J.E. Dec, C. Espey, Chemiluminescence imaging of autoignition in a DI diesel engine. SAE Technical paper 982685 (1998).  https://doi.org/10.4271/982685
  2. 2.
    R. Hessel, Z. Yue, R. Reitz, M. Musculus, J. O’Connor, Guidelines for interpreting soot luminosity imaging. SAE Int. J. Engines 10(3), 1174–1192 (2017).  https://doi.org/10.4271/2017-01-0716 CrossRefGoogle Scholar
  3. 3.
    M.I. Najafabadi, L. Egelmeers, B. Somers, N. Deen, B. Johansson, N. Dam, The influence of charge stratification on the spectral signature of partially premixed combustion in a light-duty optical engine. Appl. Phys. B 123, 108 (2017).  https://doi.org/10.1007/s00340-017-6688-9 ADSCrossRefGoogle Scholar
  4. 4.
    V. Nori, J. Seitzman, in Evaluation of chemiluminescence as a combustion diagnostic under varying operating conditions. 46th AIAA Aerospace Sciences Meeting and Exhibit 2008 (2008), p. 953.  https://doi.org/10.2514/6.2008-953
  5. 5.
    S. Schlatter, B. Schneider, Y.M. Wright, K. Boulouchos, N-heptane micro pilot assisted methane combustion in a rapid compression expansion machine. Fuel 179, 339–352 (2016).  https://doi.org/10.1016/j.fuel.2016.03.006 CrossRefGoogle Scholar
  6. 6.
    S. Schlatter, B. Schneider, Y. Wright, K. Boulouchos, Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine. SAE Technical Paper 2012-01-0825 (2012).  https://doi.org/10.4271/2012-01-0825
  7. 7.
    J.V. Pastor, J.M. García-Oliver, A. García, C. Micó, R. Durrett, A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Appl. Energy 104, 568–575 (2013).  https://doi.org/10.1016/j.apenergy.2012.11.030 CrossRefGoogle Scholar
  8. 8.
    P.G. Aleiferis, Y. Hardalupas, A.M.K.P. Taylor, K. Ishii, Y. Urata, Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine. Combust. Flame 136(1), 72–90 (2004).  https://doi.org/10.1016/j.combustflame.2003.09.004 CrossRefGoogle Scholar
  9. 9.
    T. Kammermann, W. Kreutner, M. Trottmann, L. Merotto, P. Soltic, D. Bleiner, Spark-induced breakdown spectroscopy of methane/air and hydrogen-enriched methane/air mixtures at engine relevant conditions. Spectrochim. Acta Part B 148, 152–164 (2018).  https://doi.org/10.1016/j.sab.2018.06.013 ADSCrossRefGoogle Scholar
  10. 10.
    W. Hwang, J. Dec, M. Sjöberg, Spectroscopic and chemical-kinetic analysis of the phases of HCCI autoignition and combustion for single- and two-stage ignition fuels. Combust. Flame 154(3), 387–409 (2008).  https://doi.org/10.1016/j.combustflame.2008.03.019 CrossRefGoogle Scholar
  11. 11.
    B. Kim, M. Kaneko, Y. Ikeda, T. Nakajima, Detailed spectral analysis of the process of HCCI combustion. Proc. Combust. Inst. 29(1), 671–677 (2002)CrossRefGoogle Scholar
  12. 12.
    R. Augusta, D.E. Foster, J.B. Ghandhi, J. Eng J, P.M. Najt, Chemiluminescence measurements of homogeneous charge compression ignition (HCCI) combustion. SAE Technical Paper 2006-01-1520 (2006).  https://doi.org/10.4271/2006-01-1520
  13. 13.
    E. Mancaruso, B.M. Vaglieco, Spectroscopic analysis of the phases of premixed combustion in a compression ignition engine fuelled with diesel and ethanol. Appl. Energy 143, 164–175 (2015).  https://doi.org/10.1016/j.apenergy.2015.01.031 CrossRefGoogle Scholar
  14. 14.
    E. Mancaruso, B.M. Vaglieco, Spectroscopic measurements of premixed combustion in diesel engine. Fuel 90(2), 511–520 (2011).  https://doi.org/10.1016/j.fuel.2010.09.052 CrossRefGoogle Scholar
  15. 15.
    Q. Tang, H. Liu, M. Yao, Simultaneous measurement of natural flame luminosity and emission spectra in a RCCI Engine under different fuel stratification degrees. SAE Int. J. Engines 10(3), 1155–1162 (2017).  https://doi.org/10.4271/2017-01-0714 CrossRefGoogle Scholar
  16. 16.
    A. Schmid, B.V. Rotz, R. Bombach, G. Weisser, K. Herrmann, Boulouchos K (2012) CI1-2 ignition behavior of marine diesel sprays : investigation of marine diesel ignition and combustion at engine-like conditions by means of OH* chemiluminescence and soot incandescence(ci: compression ignition engine combustion, general session papers). Int. Symp. Diagn. Model. Combust. Internal Combust. Engines 8, 182–187 (2012).  https://doi.org/10.1299/jmsesdm.2012.8.182 CrossRefGoogle Scholar
  17. 17.
    M. Bozkurt, M. Fikri, C. Schulz, Investigation of the kinetics of OH∗ and CH∗ chemiluminescence in hydrocarbon oxidation behind reflected shock waves. Appl. Phys. B 107(3), 515–527 (2012).  https://doi.org/10.1007/s00340-012-5012-y ADSCrossRefGoogle Scholar
  18. 18.
    S. Sardeshmukh, M. Bedard, W. Anderson, The use of OH* and CH* as heat release markers in combustion dynamics. Int. J. Spray Combust. Dyn. 9(4), 409–423 (2017).  https://doi.org/10.1177/1756827717718483 CrossRefGoogle Scholar
  19. 19.
    K. Devriendt, H. Van Look, B. Ceursters, J. Peeters, Kinetics of formation of chemiluminescent CH(A2Δ) by the elementary reactions of C2H(X2Σ +) with O(3P) and O2(X3Σg −): a pulse laser photolysis study. Chem. Phys. Lett. 261(4), 450–456 (1996).  https://doi.org/10.1016/0009-2614(96)01023-8 ADSCrossRefGoogle Scholar
  20. 20.
    A.G. Gaydon, The Spectroscopy of Flames (Springer, Netherlands, 1974)CrossRefGoogle Scholar
  21. 21.
    M. Kopp, M. Brower, O. Mathieu, E. Petersen, F. Güthe, CO2 chemiluminescence study at low and elevated pressures. Appl. Phys. B 107(3), 529–538 (2012).  https://doi.org/10.1007/s00340-012-5051-4 ADSCrossRefGoogle Scholar
  22. 22.
    M.M. Kopp, O. Mathieu, E.L. Petersen, Rate determination of the CO2 chemiluminescence reaction CO + O + M ⇄ CO2* + M: rate determination of the CO2* chemiluminescence reaction. Int. J. Chem. Kinet. 47(1), 50–72 (2015).  https://doi.org/10.1002/kin.20892 CrossRefGoogle Scholar
  23. 23.
    J.M. Hall, E.L. Petersen, An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures. Int. J. Chem. Kinet. 38(12), 714–724 (2006).  https://doi.org/10.1002/kin.20196 CrossRefGoogle Scholar
  24. 24.
    G.A. Karim, Combustion in gas fueled compression: ignition engines of the dual fuel type. J. Eng. Gas Turbines Power 125(3), 827 (2003).  https://doi.org/10.1115/1.1581894 CrossRefGoogle Scholar
  25. 25.
    A. Srna, M. Bolla, Y.M. Wright, K. Herrmann, R. Bombach, S.S. Pandurangi, K. Boulouchos, G. Bruneaux, Effect of methane on pilot-fuel auto-ignition in dual-fuel engines. Proc. Combust. Inst. (2018).  https://doi.org/10.1016/j.proci.2018.06.177 CrossRefGoogle Scholar
  26. 26.
    A. Srna, G. Bruneaux, B. von Rotz, R. Bombach, K. Herrmann, K. Boulouchos, Optical investigation of sooting propensity of n-dodecane pilot/lean-premixed methane dual-fuel combustion in a rapid compression-expansion machine. SAE Technical Paper 2018-01-0258 (2018).  https://doi.org/10.4271/2018-01-0258 CrossRefGoogle Scholar
  27. 27.
    A. Srna, C. Barro, K. Herrmann, F. Möri, R. Hutter, K. Boulouchos, POMDME as an alternative pilot fuel for dual-fuel engines: optical study in a rcem and application in an automotive size dual-fuel diesel engine. SAE Technical Paper 2018-01-1734 (2018).  https://doi.org/10.4271/2018-01-1734
  28. 28.
    J. Rochussen, P. Kirchen, Characterization of reaction zone growth in an optically accessible heavy-duty diesel/methane dual-fuel engine. Int. J. Engine Res. 20(5), 483–500 (2019).  https://doi.org/10.1177/1468087418756538 CrossRefGoogle Scholar
  29. 29.
    Z. Ahmad, J. Aryal, O. Ranta, O. Kaario, V. Vuorinen, M. Larmi, An optical characterization of dual-fuel combustion in a heavy-duty diesel engine. SAE Technical Paper 2018-01-0252 (2018).  https://doi.org/10.4271/2018-01-0252
  30. 30.
    S.A. Skeen, J. Manin, L.M. Pickett, Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames. Proc. Combust. Inst. 35, 3167–3174 (2015).  https://doi.org/10.1016/j.proci.2014.06.040 CrossRefGoogle Scholar
  31. 31.
    T. Kammermann, J. Koch, Y.M. Wright, P. Soltic, K. Boulouchos, Generation of turbulence in a RCEM towards engine relevant conditions for premixed combustion based on CFD and PIV investigations. SAE Int. J. Engines 10(4), 2176–2190 (2017).  https://doi.org/10.4271/2017-24-0043 CrossRefGoogle Scholar
  32. 32.
    M.P.B. Musculus, Measurements of the influence of soot radiation on in-cylinder temperatures and exhaust NOx in a heavy-duty di diesel engine. SAE Technical Paper 2005-01-0925 (2005). http://dx.doi.org/10.4271/2005-01-0925
  33. 33.
    MathWorks, Matlab 2018b documentation, smoothing splines (2018) https://ch.mathworks.com/help/curvefit/smoothing-splines.html. Accessed 07 March 2019
  34. 34.
    A. Iijima, H. Shoji, A study of HCCI combustion characteristics using spectroscopic techniques. SAE Technical Paper 2007-01-1886 (2007).  https://doi.org/10.4271/2007-01-1886
  35. 35.
    G. Tautschnig, B. Hampel, C. Hirsch, T. Sattelmayer, in Experimental investigation of OH* and CH* chemiluminescence under varying operating conditions. ASME. Turbo Expo: Power for Land, Sea, and Air, vol 1B, Combustion, Fuels and Emissions ():V01BT04A062.  https://doi.org/10.1115/GT2013-95850
  36. 36.
    T.M. Muruganandam, B.H. Kim, M.R. Morrell, V. Nori, M. Patel, B.W. Romig, J.M. Seitzman, Optical equivalence ratio sensors for gas turbine combustors. Proc. Combust. Inst. 30(1), 1601–1609 (2005).  https://doi.org/10.1016/j.proci.2004.08.247 CrossRefGoogle Scholar
  37. 37.
    Y. Ikeda, M. Kaneko, T. Nakajima, Local A/F measurement by chemiluminescence OH*, CH* and C2* in SI engine, SAE Technical Paper 2001–01-0919 (2001).  https://doi.org/10.4271/2001-01-0919
  38. 38.
    G. Pretzler, A new method for numerical abel-inversion. Zeitschrift fur Naturforschung—S. A J. Phys. Sci. 46(7), 639–641 (1991).  https://doi.org/10.1515/zna-1991-0715 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    N. Maes, M. Meijer, N. Dam, B. Somers, H. Baya Toda, G. Bruneaux, S.A. Skeen, L.M. Pickett, J. Manin, Characterization of spray a flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combust. Flame 174, 138–151 (2016).  https://doi.org/10.1016/j.combustflame.2016.09.005 CrossRefGoogle Scholar
  40. 40.
    M.P. Musculus, K. Kattke, Entrainment waves in diesel jets. SAE Int. J. Engines 2, 1170–1193 (2009).  https://doi.org/10.4271/2009-01-1355 CrossRefGoogle Scholar
  41. 41.
    N. Docquier, S. Belhalfaoui, F. Lacas, N. Darabiha, C. Rolon, Experimental and numerical study of chemiluminescence in methane/air high-pressure flames for active control applications. Proc. Combust. Inst. 28(2), 1765–1774 (2000)CrossRefGoogle Scholar
  42. 42.
    N. Ashgriz, Handbook of atomization and sprays: theory and applications (Springer, US, 2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Paul Scherrer InstituteVilligen-PSISwitzerland
  2. 2.Paul Scherrer InstituteVilligen-PSISwitzerland
  3. 3.Institute of Thermal and Fluid Engineering, School of EngineeringUniversity of Applied Sciences and Arts Northwestern SwitzerlandWindischSwitzerland
  4. 4.Institut Carnot IFPEN Transports Energie, IFP Energies nouvellesRueil-MalmaisonFrance

Personalised recommendations