Advertisement

Applied Physics B

, 125:106 | Cite as

Parabolic pulse regeneration in normal dispersion-decreasing fibers and its equivalent substitutes in presence of third-order dispersion

  • Debasruti Chowdhury
  • Dipankar Ghosh
  • Navonil Bose
  • Mousumi BasuEmail author
Article
  • 31 Downloads

Abstract

The present work deals with the compensation of third-order dispersion (TOD) in view of parabolic pulse (PP) generation in standard normal dispersion-decreasing fiber (NDDF) links by using phase modulator (PM) at certain position within the link. Since the inherent TOD in the fiber leads to an asymmetric pulse shape and thus degrades the PP formation, there is a strong requirement to minimize the TOD within the fiber link. It is seen that insertion of PM at the estimated critical length reduces misfit parameter satisfactorily at the output end and an equivalent PP is regenerated. A three-stage cascaded system comprising the first section of NDDF, dispersion-shifted fiber (DSF) and a normal dispersion fiber (NDF) may also be useful to mitigate TOD by showing the equivalent performance as that obtained by employing PM in the previous case.

Notes

Acknowledgements

The authors are thankful to the Science and Engineering Research Board (SERB), Govt. of India, for providing financial support under research project EMR/2014/000261. The first author is grateful to the Department of Science and Technology (DST), Govt. of India, for the Inspire fellowship.

References

  1. 1.
    M.E. Fermann, V.I. Kruglov, B.C. Thomsen, J.M. Dudley, J.D. Harvey, Phys. Rev. Lett. 84, 6010 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    M. Soljacic, M. Segev, Phys. Rev. E 61, R1048 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, San Diego, 2001)zbMATHGoogle Scholar
  4. 4.
    V.I. Kruglov, A.C. Peacock, J.M. Dudley, J.D. Harvey, Opt. Lett. 25, 1753 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    J.M. Dudley, C. Finot, D.J. Richardson, G. Millot, Nat. Phys. 3, 597 (2007)CrossRefGoogle Scholar
  6. 6.
    D. Anderson, M. Desaix, M. Karlsson, M. Lisak, M.L. Quiroga-Teixeiro, J. Opt. Soc. Am. B 10, 1185 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    W.J. Tomlinson, R.H. Stolen, A.M. Johnson, Opt. Lett. 10, 457 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    C. Finot, G. Millot, Opt. Express 13, 7653 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    V.I. Kruglov, A.C. Peacock, J.D. Harvey, J.M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    O. Mendoza-Yero, B. Alonso, G. Mínguez-Vega, Í.J. Sola, J. Lancis, J.A. Monsoriu, Opt. Lett. 37, 1145 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S. Sears, M. Soljacic, M. Segev, D. Krylov, K. Bergman, Phys. Rev. Lett. 84, 1902 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    N. Bose, D. Ghosh, S. Mukherjee, M. Basu, Opt. Eng. 52, 086104 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    C. Finot, G. Millot, C. Billet, J.M. Dudley, Opt. Express 11, 1547 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    T. Hirooka, M. Nakazawa, Opt. Lett. 29, 498 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    D. Ghosh, M. Basu, S. Sarkar, J. Lightwave Technol. 27, 3880 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, S. Lacroix, Opt. Lett. 31, 2734 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    K.R. Tamura, H. Kubota, M. Nakazawa, IEEE J. Quantum Electron. 36, 773 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    S. Boscolo, A.I. Latkin, S.K. Turitsyn, IEEE J. Quantum Electron. 44, 1196 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    B.G. Bale, S. Boscolo, J. Opt. 12, 015202 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S. Zhang, G. Zhao, A. Luo, Z. Zhang, Appl. Phys. B 94, 227 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    V.I. Kruglov, C. Aguergaray, J.D. Harvey, Phys. Rev. A 84, 023823 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    M. Tsang, D. Psaltis, Opt. Lett. 28, 1558 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    O. Kuzucu, Y. Okawachi, R. Salem, M.A. Foster, A.C. Turner-Foster, M. Lipson, A.L. Gaeta, Opt. Express 17, 20605 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    S. Kumar, Opt. Lett. 32, 346 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Zaouter, D.N. Papadopoulos, M. Hanna, F. Druon, E. Cormier, P. Georges, Opt. Express 15, 9372 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Liu, W. Li, D. Luo, D. Bai, C. Wang, H. Zeng, Opt. Express 24, 10939 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, H. Zeng, Appl. Phys. Lett. 112, 061106 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    S. Zhou, L. Kuznetsova, A. Chong, F.W. Wise, Opt. Express 13, 4869 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    K. Takiguchi, S. Kawanishi, H. Takara, K. Okamoto, K. Jinguji, Y. Ohmori, Electron. Lett. 32, 755 (1996)CrossRefGoogle Scholar
  30. 30.
    C.-C. Chang, H.P. Sardesai, A.M. Weiner, Opt. Lett. 23, 283 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    S. Shen, A.M. Weiner, IEEE Photon. Technol. Lett. 11, 827 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    E. Hellström, H. Sunnerud, M. Westlund, M. Karlsson, J. Lightwave Technol. 21, 1188 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    M.D. Pelusi, A. Suzuki, J. Opt. Fiber Commun. Rep. 3, 90 (2006)CrossRefGoogle Scholar
  34. 34.
    S. Wen, J. Lightwave Technol. 15, 1061 (1997)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    S. Wabnitz, C. Finot, J. Opt. Soc. Am. B 25, 614 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    C. Finot, J.M. Dudley, B. Kibler, D.J. Richardson, G. Millot, IEEE J. Quantum Electron. 45, 1482 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    C. Finot, L. Provost, P. Petropoulos, D.J. Richardson, Opt. Express 15, 852 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    S.O. Iakushev, I.A. Sukhoivanov, O.V. Shulika, V.V. Lysak, in Proceedings 9th International Conference Numerical Simulation Optoelectronic Devices (NUSOD '09), (Vol. 39 2009), https://doi.org/ https://doi.org/10.1109/NUSOD.2009.5297236
  39. 39.
    I. A. Sukhoivanov, S. O. Iakushev, S. I. Petrov, O. V. Shulika, in Proceedings IEEE Photonics Society Summer Topical Meeting Series 2010, (Vol. 86, 2010)Google Scholar
  40. 40.
    S.O. Iakushev, O.V. Shulika, I.A. Sukhoivanov, Opt. Commun. 285, 4493 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    C. Billet, J.M. Dudley, N. Joly, J.C. Knight, Opt. Express 13, 3236 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    F.Ö. Ilday, J.R. Buckley, W.G. Clark, F.W. Wise, Phys. Rev. Lett. 92, 213902 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    A.I. Latkin, S.K. Turitsyn, A.A. Sysoliatin, Opt. Lett. 32, 331 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    D. Yang, S. Kumar, H. Wang, Opt. Commun. 281, 238 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    N. Kakenov, M.S. Ergoktas, O. Balci, C. Kocabas, 2D Mater. 5, 035018 (2018)CrossRefGoogle Scholar
  46. 46.
    Y. Zhao, Y. Zhang, S. Liang, Z. Feng, Z. Yang, Proceedings of 42nd International Conference Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2017)Google Scholar
  47. 47.
    J. Li, Q. Du, C. Sun, Pattern Recogn. 42, 2460 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Engineering Science and TechnologyHowrahIndia
  2. 2.Department of Basic ScienceMCKV Institute of EngineeringHowrahIndia
  3. 3.Department of PhysicsSupreme Knowledge Foundation Group of InstitutionsChandannagarIndia

Personalised recommendations