Advertisement

Applied Physics B

, 125:109 | Cite as

Can soot primary particle size distributions be determined using laser-induced incandescence?

  • Florian J. Bauer
  • Kyle J. Daun
  • Franz J. T. Huber
  • Stefan WillEmail author
Article
  • 101 Downloads

Abstract

Soot from combustion processes often takes the form of fractal-like aggregates, assembled of primary particles, both of which obey polydisperse size distributions. In this work, the possibility of determining the primary particle size distribution through time-resolved laser-induced incandescence (TiRe-LII) under the influence of thermal shielding of polydispersely distributed aggregates is critically investigated for two typical measurement situations: in-flame measurements at high temperature and a soot-laden aerosol at room temperature. The uncertainty attached to the quantities is evaluated through Bayesian inference. We show how different kinds of prior knowledge concerning the aggregation state of the aerosol affect the uncertainties of the recovered size distribution parameters of the primary particles. To obtain reliable estimates for the primary particle size distribution parameters, specific information about the aggregate size distribution is required. This is especially the case for cold bath gases, where thermal shielding has a large effect. Furthermore, it is crucial to use the full duration of the usable LII signal trace to recover the width of the size distribution with small uncertainties. The uncertainty attached to TiRe-LII inferred primary particle size parameters becomes considerably larger when additional model parameters are considered.

Notes

References

  1. 1.
    S.R. Forrest, T.A. Witten Jr., J. Phys. A 12, L109 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    A. Brasil, T.L. Farias, M. Carvalho, J. Aerosol Sci. 30, 1379–1389 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    C. Liu, Y. Yin, F. Hu, H. Jin, C.M. Sorensen, Aerosol Sci. Technol. 49, 928–940 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    H. Michelsen, C. Schulz, G. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)CrossRefGoogle Scholar
  5. 5.
    K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 138, 195–198 (2004)CrossRefGoogle Scholar
  6. 6.
    K. Tian, K.A. Thomson, F. Liu, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 144, 782–791 (2006)CrossRefGoogle Scholar
  7. 7.
    L. Kiss, J. Söderlund, G. Niklasson, C. Granqvist, Nanotechnology 10, 25 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    A. Bescond, J. Yon, F. Ouf, D. Ferry, D. Delhaye, D. Gaffié, A. Coppalle, C. Rozé, Aerosol Sci. Technol. 48, 831–841 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    A.M. Vargas, Ö.L. Gülder, Rev. Sci. Instrum. 87, 055101 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 621–633 (1995)CrossRefGoogle Scholar
  11. 11.
    C. Sorensen, Aerosol Sci. Technol. 35, 648–687 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    B. Ma, M.B. Long, Appl. Phys. B 117, 287–303 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    D. Burr, K. Daun, O. Link, K. Thomson, G. Smallwood, J. Quant. Spectrosc. Radiat. Transf. 112, 1099–1107 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Juranyi, M. Loepfe, M. Nenkov, H. Burtscher, J. Aerosol Sci. 103, 83–92 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    K. Tsutsui, K. Koya, T. Kato, Rev. Sci. Instrum. 69, 3482–3486 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    H. Oltmann, J. Reimann, S. Will, Combust. Flame 157, 516–522 (2010)CrossRefGoogle Scholar
  17. 17.
    F.J.T. Huber, M. Altenhoff, S. Will, Rev. Sci. Instrum. 87, 053102 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J.D. Black, I. Vallet, Appl. Phys. B 95, 825–838 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333–354 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Opt. 39, 3683–3690 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boïarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, Appl. Phys. B 87, 503–521 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342–2344 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777–788 (2006)CrossRefGoogle Scholar
  24. 24.
    R.L.Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291–296 (1999)CrossRefGoogle Scholar
  25. 25.
    P. Roth, A. Filippov, J. Aerosol Sci. 27, 95–104 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    G.R. Markowski, Aerosol Sci. Technol. 7, 127–141 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055–1061 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021–2030 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    S. Dankers, A. Leipertz, Appl. Opt. 43, 3726–3731 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    S. Kuhlmann, J. Schumacher, J. Reimann, S. Will, in Proceedings of PARTEC, pp. 16–18 (2004)Google Scholar
  31. 31.
    K. Daun, B. Stagg, F. Liu, G. Smallwood, D. Snelling, Appl. Phys. B 87, 363–372 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    S.-A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696–1716 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    A. Filippov, M. Zurita, D. Rosner, J. Colloid Interface Sci. 229, 261–273 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    F. Liu, G. Smallwood, Appl. Phys. B 104, 343–355 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    J. Johnsson, H. Bladh, N.-E. Olofsson, P.-E. Bengtsson, Appl. Phys. B 112, 321–332 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    G.A. Kelesidis, E. Goudeli, S.E. Pratsinis, Carbon 121, 527–535 (2017)CrossRefGoogle Scholar
  37. 37.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383–395 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    F. Liu, G.J. Smallwood, D.R. Snelling, J. Quant. Spectrosc. Radiat. Transf. 93, 301–312 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    K. Daun, K. Thomson, F. Liu, J. Heat Transf. 130, 112701 (2008)CrossRefGoogle Scholar
  40. 40.
    M. Singh, J.P. Abrahamson, R.L.Vander Wal, Appl. Phys. B 124, 130 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    S.T. Moghaddam, P.J. Hadwin, K.J. Daun, J. Aerosol Sci. 111, 36–50 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    C.M. Sorensen, J. Yon, F. Liu, J. Maughan, W.R. Heinson, M.J. Berg, J. Quant. Spectrosc. Radiat. Transf. 217, 459–473 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    P.J. Hadwin, T. Sipkens, K. Thomson, F. Liu, K. Daun, Appl. Phys. B 122, 1 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    P.J. Hadwin, T. Sipkens, K. Thomson, F. Liu, K. Daun, Appl. Phys. B 123, 114 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    T. Sipkens, R. Mansmann, K. Daun, N. Petermann, J. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, Appl. Phys. B 116, 623–636 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    B. Crosland, M. Johnson, K. Thomson, Appl. Phys. B 102, 173–183 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    B. Crosland, K. Thomson, M. Johnson, Appl. Phys. B 112, 381–393 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    G.M. Faeth, Ü.Ö. Köylü, Combust. Sci. Technol. 108, 207–229 (1995)CrossRefGoogle Scholar
  49. 49.
    F. Liu, K. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355–382 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    K. Daun, S. Huberman, Int. J. Heat Mass Transf. 55, 7668–7676 (2012)CrossRefGoogle Scholar
  51. 51.
    K. Daun, Int. J. Heat Mass Transf. 52, 5081–5089 (2009)CrossRefGoogle Scholar
  52. 52.
    A. Filippov, D. Rosner, Int. J. Heat Mass Transf. 43, 127–138 (2000)CrossRefGoogle Scholar
  53. 53.
    N. Fuchs, Phys. Z. Sowjet. 6, 224–243 (1934)Google Scholar
  54. 54.
    G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123, 814–818 (2001)CrossRefGoogle Scholar
  55. 55.
    A. Charnes, E.L. Frome, P.-L. Yu, J. Am. Stat. Assoc. 71, 169–171 (1976)CrossRefGoogle Scholar
  56. 56.
    U.V. Toussaint, Rev. Mod. Phys. 83, 943 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    F.J.T. Huber, S. Will, K.J. Daun, J. Quant. Spectrosc. Radiat. Transf. 184, 27–39 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    L. Fahrmeir, C. Heumann, R. Künstler, I. Pigeot, G. Tutz, Statistik: Der Weg zur Datenanalyse (Springer, Berlin, 2016)CrossRefGoogle Scholar
  59. 59.
    T.A. Sipkens, P.J. Hadwin, S.J. Grauer, K.J. Daun, Appl. Opt. 56, 8436–8445 (2017)ADSCrossRefGoogle Scholar
  60. 60.
    X. López-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol Sci. 75, 43–64 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180–190 (2004)CrossRefGoogle Scholar
  62. 62.
    O. Link, D. Snelling, K. Thomson, G. Smallwood, Proc. Combust. Inst. 33, 847–854 (2011)CrossRefGoogle Scholar
  63. 63.
    R.B. Schnabel, E. Eskow, SIAM J. Sci. Comput. 11, 1136–1158 (1990)CrossRefGoogle Scholar
  64. 64.
    T. Fu, X. Cheng, Z. Yang, Appl. Opt. 47, 6112–6123 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Technische Thermodynamik (LTT)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Cluster of Excellence Engineering of Advanced Materials (EAM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  4. 4.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations