Advertisement

Applied Physics B

, 125:103 | Cite as

Measurement of thermal effect in high-power laser irradiated liquid crystal device using digital holographic interferometry

  • Teli Xi
  • Jianglei DiEmail author
  • Jiazhen Dou
  • Ying Li
  • Jianlin ZhaoEmail author
Article
  • 78 Downloads

Abstract

We present an efficient tool to monitor the thermal effect of liquid crystal (LC) device under high-power laser irradiation by using digital holographic interferometry with the characteristics of non-contact, full field, and dynamic measurement. The holograms carrying the information of the thermal effect of LC device are recorded and reconstructed during the high-power laser irradiation with different powers, respectively, and the refractive index variations corresponding to thermal effect of LC device are quantitatively calculated. It is found that a ring boundary appears in the recorded hologram when the LC device irradiated by high-power laser with hundreds Watt and the ring changes over time due to the LC device’s thermal effect. Furthermore, the experiment results show more about the performance of the LC device working on high-power light irradiation conditions and provide useful reference for the design of related high-power LC devices.

Notes

Acknowledgements

The work is supported by the Joint Fund of the National Natural Science Foundations of China and China Academy of Engineering Physics (NSAF) (U1730137); the Fundamental Research Funds for the Central Universities (3102019ghxm018).

Supplementary material

340_2019_7216_MOESM1_ESM.mp4 (8.4 mb)
Supplementary material 1 (MP4 8652 kb)
340_2019_7216_MOESM2_ESM.mp4 (4.8 mb)
Supplementary material 2 (MP4 4890 kb)

References

  1. 1.
    P. Zhou, Y. Li, X. Li, S. Liu, Y. Su, Holographic display and storage based on photo-responsive liquid crystals. Liq. Cryst. Rev. 4, 83–100 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Li, S. Gauza, S.T. Wu, T.T. Alkeskjold, J. Lægsgaard, A. Bjarklev, Highd no/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber. Mol. Cryst. Liq. Cryst. 453, 355–370 (2006)CrossRefGoogle Scholar
  3. 3.
    T. Sasaki, R. Shimura, K. Kawai, M. Sakamoto, K. Noda, N. Kawatsuki et al., Thermally controllable chiral nematic vector gratings with holographically regulated photoalignment films. Appl. Phys. B 122, 276 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Shimizu, D. Koyama, M. Fukui, A. Emoto, K. Nakamura, M. Matsukawa, Ultrasound liquid crystal lens. Appl. Phys. Lett. 112, 161104 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    N. Xie, H. Zhang, B. Liu, B. Song, J. Wu, Characterization of temperature-dependent refractive indices for nematic liquid crystal employing a microfiber-assisted Mach–Zehnder interferometer. J. Lightwave Technol. 35, 2966–2972 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    B.Y. Wei, P. Chen, S.J. Ge, L.C. Zhang, W. Hu, Y.Q. Lu, Liquid crystal depolarizer based on photoalignment technology. Photonics Res. 4, 70 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Li, Y. Wang, Z. Lu, L. Ding, P. Du, Y. Chen et al., High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system. Opt. Express 23, 681–9 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    F. Feng, I.H. White, T.D. Wilkinson, Free space communications with beam steering a two-electrode tapered laser diode using liquid–crystal SLM. J. Lightwave Technol. 31, 2001–2007 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    D. Wanjun, H. Dongxia, Z. Wei, Z. Junpu, J. Feng, Y. Zeping et al., Beam wavefront control of a thermal inertia laser for inertial confinement fusion application. Appl. Opt. 48, 3691–4 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    J. Qiao, A.W. Schmid, L.J. Waxer, T. Nguyen, J. Bunkenburg, C. Kingsley et al., In situ detection and analysis of laser-induced damage on a 1.5-m multilayer-dielectric grating compressor for high-energy, petawatt-class laser systems. Opt. Express 18, 10423–31 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Z.M. Liao, G.M. Abdulla, R.A. Negres, D.A. Cross, C.W. Carr, Predictive modeling techniques for nanosecond-laser damage growth in fused silica optics. Opt. Express 20, 15569–79 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S.W. Bahk, E. Fess, B.E. Kruschwitz, J.D. Zuegel, A high-resolution, adaptive beam-shaping system for high-power lasers. Opt. Express 18, 9151–63 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S. Li, Y. Wang, Z. Lu, L. Ding, C. Cui, Y. Chen et al., Spatial beam shaping for high-power frequency tripling lasers based on a liquid crystal spatial light modulator. Opt. Commun. 367, 181–185 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    S. Campbell, S.M.F. Triphan, R. El-Agmy, A.H. Greenaway, D.T. Reid, Direct optimization of femtosecond laser ablation using adaptive wavefront shaping. J. Opt. A Pure Appl. Opt. 9, 1100–1104 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    R.J. Beck, J.P. Parry, W.N. MacPherson, A. Waddie, N.J. Weston, J.D. Shephard et al., Application of cooled spatial light modulator for high power nanosecond laser micromachining. Opt. Express 18, 17059–65 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    G. Zhu, D. Whitehead, W. Perrie, O.J. Allegre, V. Olle, Q. Li et al., Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications. J. Phys. D Appl. Phys. 51, 095603 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnicki et al., Laser damage resistant nematic liquid crystal cell. J. Appl. Phys. 114, 053104 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Raszewski, W. Piecek, L. Jaroszewicz, R. Dabrowski, E. Nowinowski-Kruszelnicki, L. Soms et al., Transparent laser damage resistant nematic liquid crystal cell “LCNP3”. Optoelectron. Rev. 22, 196–200 (2014)ADSGoogle Scholar
  19. 19.
    Z. Cao, Q. Mu, L. Hu, Y. Liu, L. Xuan, The durability of a liquid crystal modulator for use with a high power laser. J. Opt. A Pure Appl. Opt. 9, 427–430 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D.R. Evans, A. Lorenz, Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface. Phys. Rev. E 96, 022701 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi et al., Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. Appl. Opt. 55, 7287–93 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di et al., Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer. Opt. Express 25, 13659 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang et al., Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter. Appl. Opt. 56, 2686–2690 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    T. Xi, J. Di, Y. Li, S. Dai, C. Ma, J. Zhao, Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry. Opt. Express 26, 28497–28504 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    J. Di, Y. Yu, Z. Wang, W. Qu, C.Y. Cheng, J. Zhao, Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry. Opt. Express 24, 28185 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi et al., Transmission and total internal reflection integrated digital holographic microscopy. Opt. Lett. 41, 3844–7 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations