# Comparison of time profiles for the magnetic transport of cold atoms

- 37 Downloads

## Abstract

We have compared different time profiles for the trajectory of the centre of a quadrupole magnetic trap designed for the transport of cold sodium atoms. Our experimental observations show that a smooth profile characterized by an analytical expression involving the error function minimizes the transport duration while limiting atom losses and heating of the trapped gas: moving the gas over nearly 31 cm requires only about 600 ms. Using numerical calculations of single atom classical trajectories within the trap, we show that this observation can be qualitatively interpreted as a trade-off between two types of losses: finite depth of the confinement and Majorana spin flips.

## Notes

### Acknowledgements

We are grateful to D. Guéry-Odelin for helpful comments on the manuscript. We thank A. Kaladjian for the building of a large part of the mechanical pieces we have used for the fabrication of the coils and their mounts. This work has been supported by the ANR Project No. 11-PDOC-021-01 and the Région Île-de-France in the framework of DIM NanoK (Des atomes froids aux nanosciences) project FluoStrong. LPL is a member of DIM SIRTEQ (Science et Ingénierie en Région Île-de-France pour les Technologies Quantiques).

## References

- 1.M. Greiner, I. Bloch, T.W. Hänsch, T. Esslinger, Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A
**63**(3), 031401 (2001)ADSCrossRefGoogle Scholar - 2.W. Hänsel, J. Reichel, P. Hommelhoff, T.W. Hänsch, Magnetic conveyor belt for transporting and merging trapped atom clouds. Phys. Rev. Lett.
**86**(4), 608–611 (2001)ADSCrossRefGoogle Scholar - 3.W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Bose-Einstein condensation on a microelectronic chip. Nature
**413**(6855), 498–501 (2001)ADSCrossRefGoogle Scholar - 4.S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, J. Schmiedmayer, Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip. Appl. Phys. B Lasers Opt.
**116**(4), 1017–1021 (2014)ADSCrossRefGoogle Scholar - 5.T.L. Gustavson, A.P. Chikkatur, A.E. Leanhardt, A. Görlitz, S. Gupta, D.E. Pritchard, W. Ketterle, Transport of Bose–Einstein condensates with optical tweezers. Phys. Rev. Lett.
**88**(2), 020401 (2001)CrossRefGoogle Scholar - 6.A. Couvert, T. Kawalec, G. Reinaudi, D. Guéry-Odelin, Optimal transport of ultracold atoms in the non-adiabatic regime. EPL
**83**(1), 13001 (2008)ADSCrossRefGoogle Scholar - 7.H.J. Lewandowski, D.M. Harber, D.L. Whitaker, E.A. Cornell, Simplified system for creating a Bose–Einstein condensate. J. Low Temp. Phys.
**132**(5), 309–367 (2003)ADSCrossRefGoogle Scholar - 8.S. Händel, A.L. Marchant, T.P. Wiles, S.A. Hopkins, S.L. Cornish, Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface. Rev. Sci. Instrum.
**83**(1), 013105 (2012)ADSCrossRefGoogle Scholar - 9.T. Lahaye, G. Reinaudi, Z. Wang, A. Couvert, D. Guéry-Odelin, Transport of atom packets in a train of Ioffe–Pritchard traps. Phys. Rev. A
**74**(3), 033622 (2006)ADSCrossRefGoogle Scholar - 10.D. Schrader, S. Kuhr, W. Alt, M. Müller, V. Gomer, D. Meschede, An optical conveyor belt for single neutral atoms. Appl. Phys. B Lasers Opt.
**73**(8), 819–824 (2001)ADSCrossRefGoogle Scholar - 11.S. Schmid, G. Thalhammer, K. Winkler, F. Lang, J.H. Denschlag, Long distance transport of ultracold atoms using a 1D optical lattice. New J. Phys.
**8**(8), 159–159 (2006)ADSCrossRefGoogle Scholar - 12.E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D. Guéry-Odelin, J.G. Muga, Fast atomic transport without vibrational heating. Phys. Rev. A
**83**(1), 013415 (2011)ADSCrossRefGoogle Scholar - 13.Q. Zhang, X. Chen, D. Guéry-Odelin, Fast and optimal transport of atoms with nonharmonic traps. Phys. Rev. A
**92**(4), 043410 (2015)ADSCrossRefGoogle Scholar - 14.Q. Zhang, J.G. Muga, D. Guéry-Odelin, X. Chen, Optimal shortcuts for atomic transport in an harmonic traps. J. Phys. B Atomic Mol. Opt. Phys.
**49**(12), 125503 (2016)ADSCrossRefGoogle Scholar - 15.E. Majorana, Atomi orientati in campo magnetico variabile. II. Nuovo Cim.
**9**, 43–50 (1932)ADSCrossRefGoogle Scholar - 16.T. Bergeman, G. Erez, H.J. Metcalf, Magnetostatic trapping fields for neutral atoms. Phys. Rev. A
**35**(4), 1535–1546 (1987)ADSCrossRefGoogle Scholar - 17.D.B. Ali, T. Badr, T. Brézillon, R. Dubessy, H. Perrin, A. Perrin, Detailed study of a transverse field Zeeman slower. J. Phys. B Atomic Mol. Opt. Phys.
**50**(5), 055008 (2017)ADSCrossRefGoogle Scholar - 18.J.J.W.H. Sørensen, M.K. Pedersen, M. Munch, P. Haikka, J.H. Jensen, T. Planke, M.G. Andreasen, M. Gajdacz, K. Mølmer, A. Lieberoth, J.F. Sherson, Exploring the quantum speed limit with computer games. Nature
**532**(7598), 210–213 (2016)ADSCrossRefGoogle Scholar - 19.D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, J.G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications (2019). arXiv:1904.08448
- 20.J. Dalibard, Collisional dynamics of ultra-cold atomic gases, in
*Proceedings of the International School of Physics “Enrico Fermi” Volume 140 : Bose-Einstein Condensation in Atomic Gases*, ed. by M. Inguscio, S. Stringari, C.E. Wieman (Società italiana di Fisica, Bologna, 1999), pp. 321–349Google Scholar - 21.E. Tiesinga, C.J. Williams, P.S. Julienne, K.M. Jones, P.D. Lett, W.D. Phillips, A spectroscopic determination of scattering lengths for sodium atom collisions. J. Res. Natl. Inst. Stand. Technol.
**101**(4), 505 (1996)CrossRefGoogle Scholar