Applied Physics B

, 125:100 | Cite as

Vortex beams with high-order cylindrical polarization: features of focal distributions

  • Svetlana Nikolaevna KhoninaEmail author


A detailed analytical and numerical study of the effect of phase vortex singularity has been carried out when focusing high-order cylindrical polarized fields. The possibility of forming a light spot with reduced side lobes when focusing of ring vortex beams with a high-order cylindrical polarization in the paraxial mode. The formation of a compact focal spot is possible at sharp focusing of the Gaussian beam when the order of polarization and the order of the vortex phase singularity coincide. When the orders of polarization and the vortex phase do not coincide, focused intensity distributions resembling “chamomiles” and “cogwheels”. Such distributions can be used in laser printing of plasmonic nanotextures for chemo- and biosensing applications.



This work was financially supported by the Russian Foundation for Basic Research (Grant No. 18-29-20045) in part of theoretical results and by the Ministry of Science and Higher Education within the State assignment FSRC « Crystallography and Photonics » RAS (No. 007-GZ/Ch3363/26) in part of numerical calculations.


  1. 1.
    J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M.S. Soskin, M.V. Vasnetsov, Singular optics, in Progress in Optics, ed. by E. Wolf (Elsevier, Amsterdam, 2001), pp. 219–276Google Scholar
  3. 3.
    J.F. Nye, Natural Focusing and Fine Structure of Light (IOP Publishing, Bristol, 1999)zbMATHGoogle Scholar
  4. 4.
    M.V. Berry, M.R. Dennis, Polarization singularities in isotropic random vector waves. Proc. R. Soc. London Ser. A 457, 141–155 (2001). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    I. Freund, A.I. Mokhun, M.S. Soskin, O.V. Angelsky, I.I. Mokhun, Stokes singularity relations. Opt. Lett. 27, 545–547 (2002). ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Beth, Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936). ADSCrossRefGoogle Scholar
  7. 7.
    A.H.S. Holbourn, Angular momentum of circularly polarized light. Nature 137, 31 (1936). ADSCrossRefGoogle Scholar
  8. 8.
    N.B. Simpson, K. Dholakia, L. Allen, M.J. Padgett, Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22(1), 52–54 (1997). ADSCrossRefGoogle Scholar
  9. 9.
    V.A. Soifer, V.V. Kotlyar, S.N. Khonina, Optical microparticle manipulation: advances and new possibilities created by diffractive optics. Phys. Part. Nucl. 35(6), 733–766 (2004)Google Scholar
  10. 10.
    A.S. Desyatnikov, L. Torner, Y.S. Kivshar, Optical vortices and vortex solitons, in Progress in Optics, ed. by E. Wolf (North-Holland, Amsterdam, 2005), pp. 219–319Google Scholar
  11. 11.
    G. Molina-Terriza, J.P. Torres, L. Torner, Twisted photons. Nat. Phys. 3, 305–310 (2007). CrossRefGoogle Scholar
  12. 12.
    S. Franke-Arnold, L. Allen, M. Padgett, Advances in optical angular momentum. Laser Photon. Rev. 2, 299–313 (2008). ADSCrossRefGoogle Scholar
  13. 13.
    D.L. Andrews, Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier Inc., New York, 2008)Google Scholar
  14. 14.
    M.R. Dennis, K. O’Holleran, M.J. Padgett, Singular optics: optical vortices and polarization singularities, in Progress in Optics, vol. 53 (Elsevier, Amsterdam, 2009), pp. 293–363. CrossRefGoogle Scholar
  15. 15.
    Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1457 (2009). CrossRefGoogle Scholar
  16. 16.
    A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161–204 (2011). CrossRefGoogle Scholar
  17. 17.
    S.N. Khonina, I. Golub, How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. J. Opt. Soc. Am. A 29(10), 2242–2246 (2012). ADSCrossRefGoogle Scholar
  18. 18.
    M. Kraus, M.A. Ahmed, A. Michalowski, A. Voss, R. Weber, T. Graf, Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt. Express 18(21), 22305 (2010). ADSCrossRefGoogle Scholar
  19. 19.
    C. Hnatovsky, V.G. Shvedov, N. Shostka, A.V. Rode, W. Krolikowski, Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. Opt. Lett. 37(2), 226–228 (2012). ADSCrossRefGoogle Scholar
  20. 20.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140), 1545–1548 (2013). ADSCrossRefGoogle Scholar
  21. 21.
    L.E. Helseth, Optical vortices in focal regions. Opt. Commun. 229, 85–91 (2004). ADSCrossRefGoogle Scholar
  22. 22.
    Y. Zhao, J.S. Edgar, G.D.M. Jeffries, D. McGloin, D.T. Chiu, Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007). ADSCrossRefGoogle Scholar
  23. 23.
    S.N. Khonina, S.G. Volotovsky, Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures. J. Opt. Soc. Am. A 27(10), 2188–2197 (2010). ADSCrossRefGoogle Scholar
  24. 24.
    A.P. Porfirev, A.V. Ustinov, S.N. Khonina, Polarization conversion when focusing cylindrically polarized vortex beams. Sci. Rep. 6(6), 1–9 (2016). CrossRefGoogle Scholar
  25. 25.
    A. Ciattoni, G. Cincotti, C. Palma, Circularly polarized beams and vortex generation in uniaxial media. J. Opt. Soc. Am. A 20(1), 163–171 (2003). ADSCrossRefGoogle Scholar
  26. 26.
    L. Marrucci, C. Manzo, D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006). ADSCrossRefGoogle Scholar
  27. 27.
    T.A. Fadeyeva, V.G. Shvedov, Y.V. Izdebskaya, A.V. Volyar, E. Brasselet, D.N. Neshev, A.S. Desyatnikov, W. Krolikowski, Y.S. Kivshar, Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt. Express 18(10), 10848–10863 (2010). CrossRefGoogle Scholar
  28. 28.
    S.N. Khonina, S.V. Karpeev, S.V. Alferov, V.A. Soifer, Generation of cylindrical vector beams of high orders using uniaxial crystals. J. Opt. 17, 065001 (2015). ADSCrossRefGoogle Scholar
  29. 29.
    R. Wunenburger, J.I.V. Lozano, E. Brasselet, Acoustic orbital angular momentum transfer to matter by chiral scattering. New J. Phys. 17, 103022 (2015). ADSCrossRefGoogle Scholar
  30. 30.
    M. Rafayelyan, G. Tkachenko, E. Brasselet, Reflective spin-orbit geometric phase from chiral anisotropic optical media. Phys. Rev. Lett. 116, 253902 (2016). ADSCrossRefGoogle Scholar
  31. 31.
    I. Moreno, J.A. Davis, I. Ruiz, D.M. Cottrell, Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt. Express 18(7), 7173–7183 (2010). ADSCrossRefGoogle Scholar
  32. 32.
    S.N. Khonina, D.A. Savelyev, N.L. Kazanskiy, Vortex phase elements as detectors of polarization state. Opt. Express 23(14), 17845–17859 (2015). ADSCrossRefGoogle Scholar
  33. 33.
    M. Rashid, O.M. Marago, P.H. Jones, Focusing of high order cylindrical vector beams. J. Opt. A: Pure Appl. Opt. 11, 065204 (2009). ADSCrossRefGoogle Scholar
  34. 34.
    L. Rao, J. Pu, Z. Chen, P. Yei, Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens. Opt. Laser Technol. 41, 241–246 (2009). ADSCrossRefGoogle Scholar
  35. 35.
    J. Pu, Z. Zhang, Tight focusing of spirally polarized vortex beams. Opt. Laser Technol. 42, 186–191 (2010). ADSCrossRefGoogle Scholar
  36. 36.
    S.N. Khonina, N.L. Kazanskiy, S.G. Volotovsky, Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system. J. Mod. Opt. 58(9), 748–760 (2011). ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Z.-H. Zhou, Y.-K. Guo, L.-Q. Zhu, Tight focusing of axially symmetric polarized vortex beams. Chin. Phys. B 23(4), 044201 (2014). ADSCrossRefGoogle Scholar
  38. 38.
    S.N. Khonina, A.V. Ustinov, S.G. Volotovsky, Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations. Opt. Laser Technol. 60, 99–106 (2014). ADSCrossRefGoogle Scholar
  39. 39.
    M. Stalder, Schadt, Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt. Lett. 21(23), 1948–1950 (1996). ADSCrossRefGoogle Scholar
  40. 40.
    R. Dorn, S. Quabis, G. Leuchs, Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003). ADSCrossRefGoogle Scholar
  41. 41.
    H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photon. 2, 501–505 (2008). CrossRefGoogle Scholar
  42. 42.
    S.N. Khonina, Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions. Opt. Eng. 52(9), 091711 (2013). ADSCrossRefGoogle Scholar
  43. 43.
    X. Hao, C. Kuang, T. Wang, X. Liu, Phase encoding for sharper focus of the azimuthally polarized beam. Opt. Lett. 35(23), 3928–3930 (2010). ADSCrossRefGoogle Scholar
  44. 44.
    M.V. Berry, Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004). ADSCrossRefGoogle Scholar
  45. 45.
    J. Leach, E. Yao, M.J. Padgett, Observation of the vortex structure of a non-integer vortex beam. New J. Phys. 6(1), 71–78 (2004). ADSCrossRefGoogle Scholar
  46. 46.
    S.S.R. Oemrawsingh, J.A.W. van Houwelingen, E.R. Eliel, J.P. Woerdman, E.J.K. Verstegen, J.G. Kloosterboer, G.W. Hooft, Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 688–694 (2004). ADSCrossRefGoogle Scholar
  47. 47.
    S.N. Khonina, A.P. Porfirev, A.V. Ustinov, Diffraction patterns with mth order symmetry generated by sectional spiral phase plates. J. Opt. 17, 125607–125608 (2015). ADSCrossRefGoogle Scholar
  48. 48.
    S.N. Khonina, A.V. Ustinov, Focusing of shifted vortex beams of arbitrary order with different polarization. Opt. Commun. 426, 359–365 (2018). ADSCrossRefGoogle Scholar
  49. 49.
    P.H. Jones, M. Rashid, M. Makita, O.M. Maragò, Sagnac interferometer method for synthesis of fractional polarization vortices. Opt. Lett. 34(17), 2560–2562 (2009). ADSCrossRefGoogle Scholar
  50. 50.
    Z. Zhou, L. Zhu, Tight focusing of axially symmetric polarized beams with fractional orders. Opt. Quant. Electron. 48, 44–49 (2016). CrossRefGoogle Scholar
  51. 51.
    S.N. Khonina, A.V. Ustinov, S.A. Fomchenkov, A.P. Porfirev, Formation of hybrid higher-order cylindrical vector beams using binary multi-sector phase plates. Sci. Rep. 8, 14320–14321 (2018). ADSCrossRefGoogle Scholar
  52. 52.
    S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000). ADSCrossRefGoogle Scholar
  53. 53.
    R. Kant, Superresolution and increased depth of focus: an inverse problem of vector diffraction. J. Mod. Opt. 47, 905–916 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    C.J.R. Sheppard, A. Choudhury, Annular pupils, radial polarization, and superresolution. Appl. Opt. 43, 4322 (2004). ADSCrossRefGoogle Scholar
  55. 55.
    S.V. Karpeev, V.D. Paranin, S.N. Khonina, Generation of nonuniformly polarised vortex Bessel beams by an interference polarizer. Quantum Electron. 48(6), 521–526 (2018). ADSCrossRefGoogle Scholar
  56. 56.
    S.I. Kharitonov, S.N. Khonina, Conversion of a conical wave with circular polarization into a vortex cylindrically polarized beam in a metal waveguide. Comput. Opt. 42(2), 197–211 (2018). ADSCrossRefGoogle Scholar
  57. 57.
    A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S.I. Kudryashov, P. Danilov, A. Ionin, On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications. ACS Appl. Mater. Interfaces. 8(37), 24946–24955 (2016). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IPSI RAS, Branch of the FSRC “Crystallography and Photonics” RASSamaraRussia
  2. 2.Samara National Research UniversitySamaraRussia

Personalised recommendations