Advertisement

Applied Physics B

, 125:100 | Cite as

Vortex beams with high-order cylindrical polarization: features of focal distributions

  • Svetlana Nikolaevna KhoninaEmail author
Article
  • 110 Downloads

Abstract

A detailed analytical and numerical study of the effect of phase vortex singularity has been carried out when focusing high-order cylindrical polarized fields. The possibility of forming a light spot with reduced side lobes when focusing of ring vortex beams with a high-order cylindrical polarization in the paraxial mode. The formation of a compact focal spot is possible at sharp focusing of the Gaussian beam when the order of polarization and the order of the vortex phase singularity coincide. When the orders of polarization and the vortex phase do not coincide, focused intensity distributions resembling “chamomiles” and “cogwheels”. Such distributions can be used in laser printing of plasmonic nanotextures for chemo- and biosensing applications.

Notes

Funding

This work was financially supported by the Russian Foundation for Basic Research (Grant No. 18-29-20045) in part of theoretical results and by the Ministry of Science and Higher Education within the State assignment FSRC « Crystallography and Photonics » RAS (No. 007-GZ/Ch3363/26) in part of numerical calculations.

References

  1. 1.
    J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974).  https://doi.org/10.1098/rspa.1974.0012 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M.S. Soskin, M.V. Vasnetsov, Singular optics, in Progress in Optics, ed. by E. Wolf (Elsevier, Amsterdam, 2001), pp. 219–276Google Scholar
  3. 3.
    J.F. Nye, Natural Focusing and Fine Structure of Light (IOP Publishing, Bristol, 1999)zbMATHGoogle Scholar
  4. 4.
    M.V. Berry, M.R. Dennis, Polarization singularities in isotropic random vector waves. Proc. R. Soc. London Ser. A 457, 141–155 (2001).  https://doi.org/10.1098/rspa.2000.0660 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    I. Freund, A.I. Mokhun, M.S. Soskin, O.V. Angelsky, I.I. Mokhun, Stokes singularity relations. Opt. Lett. 27, 545–547 (2002).  https://doi.org/10.1364/OL.27.000545 ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Beth, Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).  https://doi.org/10.1103/PhysRev.50.115 ADSCrossRefGoogle Scholar
  7. 7.
    A.H.S. Holbourn, Angular momentum of circularly polarized light. Nature 137, 31 (1936).  https://doi.org/10.1038/137031a0 ADSCrossRefGoogle Scholar
  8. 8.
    N.B. Simpson, K. Dholakia, L. Allen, M.J. Padgett, Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22(1), 52–54 (1997).  https://doi.org/10.1364/OL.22.000052 ADSCrossRefGoogle Scholar
  9. 9.
    V.A. Soifer, V.V. Kotlyar, S.N. Khonina, Optical microparticle manipulation: advances and new possibilities created by diffractive optics. Phys. Part. Nucl. 35(6), 733–766 (2004)Google Scholar
  10. 10.
    A.S. Desyatnikov, L. Torner, Y.S. Kivshar, Optical vortices and vortex solitons, in Progress in Optics, ed. by E. Wolf (North-Holland, Amsterdam, 2005), pp. 219–319Google Scholar
  11. 11.
    G. Molina-Terriza, J.P. Torres, L. Torner, Twisted photons. Nat. Phys. 3, 305–310 (2007).  https://doi.org/10.1038/nphys607 CrossRefGoogle Scholar
  12. 12.
    S. Franke-Arnold, L. Allen, M. Padgett, Advances in optical angular momentum. Laser Photon. Rev. 2, 299–313 (2008).  https://doi.org/10.1002/lpor.200810007 ADSCrossRefGoogle Scholar
  13. 13.
    D.L. Andrews, Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier Inc., New York, 2008)Google Scholar
  14. 14.
    M.R. Dennis, K. O’Holleran, M.J. Padgett, Singular optics: optical vortices and polarization singularities, in Progress in Optics, vol. 53 (Elsevier, Amsterdam, 2009), pp. 293–363.  https://doi.org/10.1016/S0079-6638(08)00205-9 CrossRefGoogle Scholar
  15. 15.
    Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1457 (2009).  https://doi.org/10.1364/AOP.1.000001 CrossRefGoogle Scholar
  16. 16.
    A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161–204 (2011).  https://doi.org/10.1364/AOP.3.000161 CrossRefGoogle Scholar
  17. 17.
    S.N. Khonina, I. Golub, How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. J. Opt. Soc. Am. A 29(10), 2242–2246 (2012).  https://doi.org/10.1364/JOSAA.29.002242 ADSCrossRefGoogle Scholar
  18. 18.
    M. Kraus, M.A. Ahmed, A. Michalowski, A. Voss, R. Weber, T. Graf, Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt. Express 18(21), 22305 (2010).  https://doi.org/10.1364/OE.18.022305 ADSCrossRefGoogle Scholar
  19. 19.
    C. Hnatovsky, V.G. Shvedov, N. Shostka, A.V. Rode, W. Krolikowski, Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. Opt. Lett. 37(2), 226–228 (2012).  https://doi.org/10.1364/OL.37.000226 ADSCrossRefGoogle Scholar
  20. 20.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140), 1545–1548 (2013).  https://doi.org/10.1126/science.1237861 ADSCrossRefGoogle Scholar
  21. 21.
    L.E. Helseth, Optical vortices in focal regions. Opt. Commun. 229, 85–91 (2004).  https://doi.org/10.1016/j.optcom.2003.10.043 ADSCrossRefGoogle Scholar
  22. 22.
    Y. Zhao, J.S. Edgar, G.D.M. Jeffries, D. McGloin, D.T. Chiu, Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).  https://doi.org/10.1103/PhysRevLett.99.073901 ADSCrossRefGoogle Scholar
  23. 23.
    S.N. Khonina, S.G. Volotovsky, Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures. J. Opt. Soc. Am. A 27(10), 2188–2197 (2010).  https://doi.org/10.1364/JOSAA.27.002188 ADSCrossRefGoogle Scholar
  24. 24.
    A.P. Porfirev, A.V. Ustinov, S.N. Khonina, Polarization conversion when focusing cylindrically polarized vortex beams. Sci. Rep. 6(6), 1–9 (2016).  https://doi.org/10.1038/s41598-016-0015-2 CrossRefGoogle Scholar
  25. 25.
    A. Ciattoni, G. Cincotti, C. Palma, Circularly polarized beams and vortex generation in uniaxial media. J. Opt. Soc. Am. A 20(1), 163–171 (2003).  https://doi.org/10.1364/JOSAA.20.000163 ADSCrossRefGoogle Scholar
  26. 26.
    L. Marrucci, C. Manzo, D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).  https://doi.org/10.1103/PhysRevLett.96.163905 ADSCrossRefGoogle Scholar
  27. 27.
    T.A. Fadeyeva, V.G. Shvedov, Y.V. Izdebskaya, A.V. Volyar, E. Brasselet, D.N. Neshev, A.S. Desyatnikov, W. Krolikowski, Y.S. Kivshar, Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt. Express 18(10), 10848–10863 (2010).  https://doi.org/10.1364/OE.18.010848 CrossRefGoogle Scholar
  28. 28.
    S.N. Khonina, S.V. Karpeev, S.V. Alferov, V.A. Soifer, Generation of cylindrical vector beams of high orders using uniaxial crystals. J. Opt. 17, 065001 (2015).  https://doi.org/10.1088/2040-8978/17/6/065001 ADSCrossRefGoogle Scholar
  29. 29.
    R. Wunenburger, J.I.V. Lozano, E. Brasselet, Acoustic orbital angular momentum transfer to matter by chiral scattering. New J. Phys. 17, 103022 (2015).  https://doi.org/10.1088/1367-2630/17/10/103022 ADSCrossRefGoogle Scholar
  30. 30.
    M. Rafayelyan, G. Tkachenko, E. Brasselet, Reflective spin-orbit geometric phase from chiral anisotropic optical media. Phys. Rev. Lett. 116, 253902 (2016).  https://doi.org/10.1103/PhysRevLett.116.253902 ADSCrossRefGoogle Scholar
  31. 31.
    I. Moreno, J.A. Davis, I. Ruiz, D.M. Cottrell, Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt. Express 18(7), 7173–7183 (2010).  https://doi.org/10.1364/OE.18.007173 ADSCrossRefGoogle Scholar
  32. 32.
    S.N. Khonina, D.A. Savelyev, N.L. Kazanskiy, Vortex phase elements as detectors of polarization state. Opt. Express 23(14), 17845–17859 (2015).  https://doi.org/10.1364/OE.23.017845 ADSCrossRefGoogle Scholar
  33. 33.
    M. Rashid, O.M. Marago, P.H. Jones, Focusing of high order cylindrical vector beams. J. Opt. A: Pure Appl. Opt. 11, 065204 (2009).  https://doi.org/10.1088/1464-4258/11/6/065204 ADSCrossRefGoogle Scholar
  34. 34.
    L. Rao, J. Pu, Z. Chen, P. Yei, Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens. Opt. Laser Technol. 41, 241–246 (2009).  https://doi.org/10.1016/j.optlastec.2008.06.012 ADSCrossRefGoogle Scholar
  35. 35.
    J. Pu, Z. Zhang, Tight focusing of spirally polarized vortex beams. Opt. Laser Technol. 42, 186–191 (2010).  https://doi.org/10.1016/j.optlastec.2009.06.008 ADSCrossRefGoogle Scholar
  36. 36.
    S.N. Khonina, N.L. Kazanskiy, S.G. Volotovsky, Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system. J. Mod. Opt. 58(9), 748–760 (2011).  https://doi.org/10.1080/09500340.2011.568710 ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Z.-H. Zhou, Y.-K. Guo, L.-Q. Zhu, Tight focusing of axially symmetric polarized vortex beams. Chin. Phys. B 23(4), 044201 (2014).  https://doi.org/10.1088/1674-1056/23/4/044201 ADSCrossRefGoogle Scholar
  38. 38.
    S.N. Khonina, A.V. Ustinov, S.G. Volotovsky, Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations. Opt. Laser Technol. 60, 99–106 (2014).  https://doi.org/10.1016/j.optlastec.2014.01.012M ADSCrossRefGoogle Scholar
  39. 39.
    M. Stalder, Schadt, Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt. Lett. 21(23), 1948–1950 (1996).  https://doi.org/10.1364/OL.21.001948 ADSCrossRefGoogle Scholar
  40. 40.
    R. Dorn, S. Quabis, G. Leuchs, Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003).  https://doi.org/10.1103/PhysRevLett.91.233901 ADSCrossRefGoogle Scholar
  41. 41.
    H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photon. 2, 501–505 (2008).  https://doi.org/10.1038/nphoton.2008.127 CrossRefGoogle Scholar
  42. 42.
    S.N. Khonina, Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions. Opt. Eng. 52(9), 091711 (2013).  https://doi.org/10.1117/1.OE.52.9.091711 ADSCrossRefGoogle Scholar
  43. 43.
    X. Hao, C. Kuang, T. Wang, X. Liu, Phase encoding for sharper focus of the azimuthally polarized beam. Opt. Lett. 35(23), 3928–3930 (2010).  https://doi.org/10.1364/OL.35.003928 ADSCrossRefGoogle Scholar
  44. 44.
    M.V. Berry, Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004).  https://doi.org/10.1088/1464-4258/6/2/018 ADSCrossRefGoogle Scholar
  45. 45.
    J. Leach, E. Yao, M.J. Padgett, Observation of the vortex structure of a non-integer vortex beam. New J. Phys. 6(1), 71–78 (2004).  https://doi.org/10.1088/1367-2630/6/1/071 ADSCrossRefGoogle Scholar
  46. 46.
    S.S.R. Oemrawsingh, J.A.W. van Houwelingen, E.R. Eliel, J.P. Woerdman, E.J.K. Verstegen, J.G. Kloosterboer, G.W. Hooft, Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 688–694 (2004).  https://doi.org/10.1364/AO.43.000688 ADSCrossRefGoogle Scholar
  47. 47.
    S.N. Khonina, A.P. Porfirev, A.V. Ustinov, Diffraction patterns with mth order symmetry generated by sectional spiral phase plates. J. Opt. 17, 125607–125608 (2015).  https://doi.org/10.1088/2040-8978/17/12/125607 ADSCrossRefGoogle Scholar
  48. 48.
    S.N. Khonina, A.V. Ustinov, Focusing of shifted vortex beams of arbitrary order with different polarization. Opt. Commun. 426, 359–365 (2018).  https://doi.org/10.1016/j.optcom.2018.05.070 ADSCrossRefGoogle Scholar
  49. 49.
    P.H. Jones, M. Rashid, M. Makita, O.M. Maragò, Sagnac interferometer method for synthesis of fractional polarization vortices. Opt. Lett. 34(17), 2560–2562 (2009).  https://doi.org/10.1364/OL.34.002560 ADSCrossRefGoogle Scholar
  50. 50.
    Z. Zhou, L. Zhu, Tight focusing of axially symmetric polarized beams with fractional orders. Opt. Quant. Electron. 48, 44–49 (2016).  https://doi.org/10.1007/s11082-015-0260-9 CrossRefGoogle Scholar
  51. 51.
    S.N. Khonina, A.V. Ustinov, S.A. Fomchenkov, A.P. Porfirev, Formation of hybrid higher-order cylindrical vector beams using binary multi-sector phase plates. Sci. Rep. 8, 14320–14321 (2018).  https://doi.org/10.1038/s41598-018-32469-0 ADSCrossRefGoogle Scholar
  52. 52.
    S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000).  https://doi.org/10.1016/S0030-4018(99)00729-4 ADSCrossRefGoogle Scholar
  53. 53.
    R. Kant, Superresolution and increased depth of focus: an inverse problem of vector diffraction. J. Mod. Opt. 47, 905–916 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    C.J.R. Sheppard, A. Choudhury, Annular pupils, radial polarization, and superresolution. Appl. Opt. 43, 4322 (2004).  https://doi.org/10.1364/AO.43.004322 ADSCrossRefGoogle Scholar
  55. 55.
    S.V. Karpeev, V.D. Paranin, S.N. Khonina, Generation of nonuniformly polarised vortex Bessel beams by an interference polarizer. Quantum Electron. 48(6), 521–526 (2018).  https://doi.org/10.1070/QEL16603 ADSCrossRefGoogle Scholar
  56. 56.
    S.I. Kharitonov, S.N. Khonina, Conversion of a conical wave with circular polarization into a vortex cylindrically polarized beam in a metal waveguide. Comput. Opt. 42(2), 197–211 (2018).  https://doi.org/10.18287/2412-6179-2018-42-2-197-211 ADSCrossRefGoogle Scholar
  57. 57.
    A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S.I. Kudryashov, P. Danilov, A. Ionin, On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications. ACS Appl. Mater. Interfaces. 8(37), 24946–24955 (2016).  https://doi.org/10.1021/acsami.6b07740 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IPSI RAS, Branch of the FSRC “Crystallography and Photonics” RASSamaraRussia
  2. 2.Samara National Research UniversitySamaraRussia

Personalised recommendations