Applied Physics B

, 125:96 | Cite as

Laser-induced incandescence for soot measurements in an aero-engine combustor at pressures up to 20 bar

  • K. P. GeigleEmail author
  • J. Zerbs
  • R. Hadef
  • C. Guin
Part of the following topical collections:
  1. Laser-Induced Incandescence


Soot is one of the most discussed pollutants in ground and air traffic. Moreover, its effect as source of intense radiation is significant as soon as locally rich mixtures occur, especially at in-creased pressure. This motivates the need to better understand soot formation and oxidation in turbulent, pressurised environment in order to prevent its emission as much as possible. A detailed understanding of the underlying processes can be gained when correlating sophisticated CFD modelling with well-defined validation experiments at technical conditions. LII has proven to be a valuable diagnostic to quantitatively monitor soot distributions inside combustion processes. However, application to pressurized gas turbine combustors has rarely been published for several reasons. Here, we present trends for soot distributions inside at technical combustor operated between 4 and 20 bar at realistic geometries and flow rates. Considerations on tackling typical challenges at technical conditions are presented. The resulting time-averaged soot distributions serve to determine positions of soot formation and oxidation as well as quantification of soot concentrations under the highly challenging technical conditions of the study. In general, soot concentrations were found to be relatively low. In combination with data derived independently from the present work, involving the application of other diagnostics (OH and kerosene distributions as well as temperatures), a good validation data set is available to support soot modellers.



Funding of the work by the European Community under the Sixth Framework Programme, Aeronautics and Space, project TLC - Towards Lean Combustion Contract No. AST4-CT-2005-012326 is gratefully acknowledged. Additionally, special thanks are expressed for the excellent support of the test campaign by JJ Lecout, E Paux and E Landais.


  1. 1.
    H.T. Brocklehurst, J.B. Moss, C.D. Hurley, C.H. Priddin. Proceedings of RTO AVT symposium on “gas turbine engine combustion, emissions and alternative fuels”, 1998Google Scholar
  2. 2.
    V. Raman, R.O. Fox, Annu. Rev. Fluid Mech. 48, 159 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    C. Eberle, P. Gerlinger, K.P. Geigle, M. Aigner, Combust. Sci. Technol. 190, 1194 (2018)CrossRefGoogle Scholar
  4. 4.
    R.J. Santoro, C.R. Shaddix, Laser-induced incandescence, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002), p. 252Google Scholar
  5. 5.
    H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2 (2015)CrossRefGoogle Scholar
  6. 6.
    J.A. Pinson, D.L. Mitchell, R.J. Santoro, T.A. Litzinger, SAE Technical Paper 932650 (Society of Automotive Engineers, Warrendale, 1993)Google Scholar
  7. 7.
    G. Wiltafsky, W. Stolz, J. Köhler, C. Espey, SAE Technical Paper 961200 (Society of Automotive Engineers, Warrendale, 1996)Google Scholar
  8. 8.
    J.E. Dec, A.O. zur Loye, D.L. Siebers, SAE Technical Paper 910224 (Society of Automotive Engineers, Warrendale, 1991)Google Scholar
  9. 9.
    L.M. Pickett, D.L. Siebers, Combust. Flame 138, 114 (2004)CrossRefGoogle Scholar
  10. 10.
    L. de Francqueville, G. Bruneaux, B. Thirouard, SAE Int. J. Eng. 3, 163 (2010)CrossRefGoogle Scholar
  11. 11.
    K.P. Geigle, R. Hadef, W. Meier, J. Eng. Gas Turbines Power 136, 021505 (2014)CrossRefGoogle Scholar
  12. 12.
    U. Meier, J. Heinze, E. Magens, M. Schroll, C. Hassa, S. Bake, T. Doerr. Proceedings of ASME Turbo Expo, 2015, GT2015-43391Google Scholar
  13. 13.
    K.P. Geigle, M. Köhler, W. O’Loughlin, W. Meier, Proc. Combust. Inst. 35, 3373 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 2175 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Zerbs, K.P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, W. Meier, Appl. Phys. B 96, 683 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    R.L. Vander Wal, D.L. Dietrich, Appl. Opt 34, 1103 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    O. Lammel, K.P. Geigle, R. Lückerath, W. Meier, M. Aigner. Proceedings of ASME Turbo Expo, 2007, GT2007-27902Google Scholar
  19. 19.
    R.L. Vander Wal, Appl. Phys. B 96, 601 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    G.B. Kim, J.Y. Shim, S.W. Cho, Y.J. Chang, C.H. Jeon, J. Mech. Sci. Technol. 22, 1154 (2008)CrossRefGoogle Scholar
  21. 21.
    E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 119, 745 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Hadef, K.P. Geigle: Unpublished results, in Presented at the 7th international workshop on laser-induced incandescence, Tutzing, Germany, 10–12 June 2018Google Scholar
  23. 23.
    R. Hadef, K.P. Geigle, W. Meier, M. Aigner, Int. J. Therm. Sci. 49, 1457 (2010)CrossRefGoogle Scholar
  24. 24.
    S.Y. Lee, S.R. Turns, R.J. Santoro, Combust. Flame 156, 2264 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Köhler, K.P. Geigle, T. Blacha, P. Gerlinger, W. Meier, Combust. Flame 159, 2620 (2012)CrossRefGoogle Scholar
  26. 26.
    U. Meier, C. Hassa, K.P. Geigle, O. Lammel, P. Kutne: Proceedings of 1st CEAS European air and space conference, 2007, Paper 233Google Scholar
  27. 27.
    F. Grisch, M. Orain, B. Rossow, E. Jourdanneau, C. Guin: Proceedings of the 44th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, 2008, AIAA 2008-4868Google Scholar
  28. 28.
    M. Orain, F. Grisch, E. Jourdanneau, B. Rossow, C. Guin, B. Tretout, C.R. Mec. 337, 373 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    F. Dupoirieux, N. Bertier, C. Guin, K.P. Geigle, C. Eberle, P. Gerlinger, Aerosp Lab J 11–07, 1 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Combustion TechnologyGerman Aerospace Center (DLR)StuttgartGermany
  2. 2.Institut de Génie MécaniqueUniversité Larbi Ben M’HidiOum El BouaghiAlgeria
  3. 3.Department of Multi-Physics for EnergeticsONERAPalaiseauFrance

Personalised recommendations