Advertisement

Applied Physics B

, 125:98 | Cite as

Analysis of controlling methods for femtosecond pulse sequence with terahertz repetition rate

  • Maksim MelnikEmail author
  • Anton Tcypkin
  • Sergey Putilin
  • Sergei Kozlov
  • Joel J. P. C. Rodrigues
Article
  • 81 Downloads

Abstract

In modern optical fiber transmission systems, an important aspect is the temporal multiplexing of channels. Guided-wave optical technologies for creating communication lines with a terahertz repetition rate come to the fore. In this paper, the methods of numerical simulation have illustrated the possibility of forming a sequence of subpulses with any duration and with a terahertz repetition rate as well as to control it considering the discrepancy coefficient. This coefficient is related to the discrepancy between the central frequency of subpulses in the quasidiscrete temporal structure and the central frequency of the spectral lines in the quasidiscrete spectral structure. Its influence on the sequence of subpulses after encoding is shown. The results demonstrate the formation of a controlled sequence with a duration of more than 100 ps and a repetition rate of 0.4 THz, which is difficult to achieve by existing methods.

Notes

Funding

Government of the Russian Federation (08-08). National Funding from the FCT–Fundação para a Ciência e Tecnologia (UID/EEA/50008/2009). RNP, with resources from MCTIC, Grant No. 01250.075413/2018-04 under the Centro de Referência em Radiocomunicações–CRR project of the Instituto Nacional de Telecomunicações (Inatel), Brazil. Brazilian National Council for Research and Development (CNPq) (Grant No. 309335/2017-5).

References

  1. 1.
    G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, Probing the ultimate limit of fiber-optic strain sensing. Science 330(6007), 1081–1084 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    E. Hamidi, D.E. Leaird, A.M. Weiner, Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    I. Coddington, W.C. Swann, L. Nenadovic, N.R. Newbury, Rapid and precise absolute distance measurements at long range. Nat. Photonics 3(6), 351 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    P.J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, S. Bhooplapur, Advanced ultrafast technologies based on optical frequency combs. IEEE J. Sel. Top. Quantum Electron. 18(1), 258–274 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    J. He, F. Long, R. Deng, J. Shi, M. Dai, L. Chen, Flexible multiband ofdm ultra-wideband services based on optical frequency combs. IEEE/OSA J. Opt. Commun. Netw. 9(5), 393–400 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Pang, M. Beltrán, J. Sánchez, E. Pellicer, J.V. Olmos, R. Llorente, I.T. Monroy, Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems. J. Opt. Commun. Netw. 6(1), 1–7 (2014)CrossRefGoogle Scholar
  7. 7.
    A.N. Tsypkin, S.E. Putilin, A.V. Okishev, S.A. Kozlov, Ultrafast information transfer through optical fiber by means of quasidiscrete spectral supercontinuums. Opt. Eng. 54(5), 056111 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    J. Kim, Y. Song, Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8(3), 465–540 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, T. Hänsch, Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84(22), 5102 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    T. Sakamoto, T. Kawanishi, M. Tsuchiya, 10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach–Zehnder modulator. Opt. Lett. 33(8), 890–892 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L.P. Barry, P. Anandarajah, 40 nm wavelength tunable gain-switched optical comb source. Opt. Express 19(26), B415–B420 (2011)CrossRefGoogle Scholar
  13. 13.
    R. Wu, D.E. Leaird, A.M. Weiner et al., Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Opt. Express 21(5), 6045–6052 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    C. He, S. Pan, R. Guo, Y. Zhao, M. Pan, Ultraflat optical frequency comb generated based on cascaded polarization modulators. Opt. Lett. 37(18), 3834–3836 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    I. Demirtzioglou, C. Lacava, K.R. Bottrill, D.J. Thomson, G.T. Reed, D.J. Richardson, P. Petropoulos, Frequency comb generation in a silicon ring resonator modulator. Opt. Express 26(2), 790–796 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    W. Wang, S.T. Chu, B.E. Little, A. Pasquazi, Y. Wang, L. Wang, W. Zhang, L. Wang, X. Hu, G. Wang et al., Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep. 6, 28501 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    M. Bakhtin, S. Kozlov, Formation of a sequence of ultrashort signals in a collision of pulses consisting of a small number of oscillations of the light field in nonlinear optical media. Opt. Spectrosc. 98(3), 425–430 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    A. Tcypkin, S. Putilin, Spectral-temporal encoding and decoding of the femtosecond pulses sequences with a THz repetition rate. Appl. Phys. B 123(1), 44 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    A.M. Weiner, J.P. Heritage, E. Kirschner, High-resolution femtosecond pulse shaping. JOSA B 5(8), 1563–1572 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71(5), 1929–1960 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    P.C. Sun, Y.T. Mazurenko, W. Chang, P. Yu, Y. Fainman, All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding. Opt. Lett. 20(16), 1728–1730 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    D.M. Marom, D. Panasenko, P.-C. Sun, Y. Fainman, Spatial-temporal wave mixing for space–time conversion. Opt. Lett. 24(8), 563–565 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    A.N. Tsypkin, Y.A. Komarova, S.E. Putilin, A.V. Okishev, S.A. Kozlov, Direct measurement of the parameters of a femtosecond pulse train with a THz repetition rate generated by the interference of two phase-modulated femtosecond pulses. Appl. Opt. 54(8), 2113–2117 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A. Tsypkin, S. Putilin, S. Kozlov, Formation of a sequence of femtosecond optical pulses with a terahertz repetition rate. Opt. Spectrosc. 114(6), 863–867 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    G. Li, X. Peng, S. Dai, Y. Wang, M. Xie, L. Yang, C. Yang, W. Wei, P. Zhang, Highly coherent 1.5–8.3 μm broadband supercontinuum generation in tapered As-S chalcogenide fibers. J. Lightwave Technol. 37(9), 1847–1852 (2019)ADSCrossRefGoogle Scholar
  27. 27.
    N. Belashenkov, A. Drozdov, S. Kozlov, Y.A. Shpolyanskiy, A. Tsypkin, Phase modulation of femtosecond light pulses whose spectra are superbroadened in dielectrics with normal group dispersion. J. Opt. Technol. 75(10), 611–614 (2008)CrossRefGoogle Scholar
  28. 28.
    Y.T. Mazurenko, S. Putilin, A. Spiro, A. Beliaev, V. Yashin, S. Chizhov, Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics. Opt. Lett. 21(21), 1753–1755 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Institute of Photonics and Optical Information TechnologiesITMO UniversitySt. PetersburgRussia
  2. 2.National Institute of Telecommunications (Inatel)Santa Rita do SapucaíBrazil
  3. 3.Instituto de TelecomunicaçõesCovilhãPortugal
  4. 4.Federal University of PiauíTeresinaBrazil

Personalised recommendations