Applied Physics B

, 125:99 | Cite as

100 GHz free spectral range-tunable multi-wavelength fiber laser using single–multi–single mode fiber interferometer

  • H. AhmadEmail author
  • S. I. Ooi
  • Z. C. Tiu


Six single–multi–single (SMS) mode fiber-based Mach–Zehnder Interferometers (MZI) with different spooling radii are demonstrated as spatial mode filtering elements for multi-wavelength laser generation. Free spectral range (FSR) tuning of the multi-wavelength output generated is realized by alternating between the six MZIs, which have different macro-bending losses. Additional FSR tuning is also realized by changing the spooling radius of the two-mode step index fiber section within the MZI setups from 80 mm to 30 mm, giving an FSR tuning range of 0.89–0.99 nm. All generated multi-wavelength outputs show high stability over a test period of 100 min. The proposed multi-wavelength lasers are highly suitable for various microwave photonics applications the field of such as microwave signal source generation and microwave photonic filtering.



Funding for this work was supported by Ministry of Higher Education (MoHE), Malaysia under the Grant GA 010-2014 (ULUNG) as well as the University of Malaya under the Grants RU 013-2018 and HiCoE Phase II Funding.


  1. 1.
    D. Jäger, A. Stöhr, Microwave photonics—from concepts to applications, in Proceedings of German Micronic Conference (GeMiC 2005), ed. by W. Menzel (Ulm, 2005)Google Scholar
  2. 2.
    R. Espinola, M. Tsai, J.T. Yardley, R. Osgood, Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photonics Technol. Lett. 15, 1366–1368 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, F. Bretenaker, Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser. Opt. Lett. 31, 62–64 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    H. Hillmer, J. Daleiden, C. Prott, F. Römer, S. Irmer, V. Rangelov, A. Tarraf, S. Schüler, M. Strassner, Potential for micromachined actuation of ultra-wide continuously tunable optoelectronic devices. Appl. Phys. B 75, 3–13 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    L. Maleki, Sources: the optoelectronic oscillator. Nat. Photonics 5, 728 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Tian, P. Lewin, D. Pommerenke, J. Wilkinson, S. Sutton, Partial discharge on-line monitoring for HV cable systems using electro-optic modulators. IEEE Trans. Dielectr. Electr. Insul. 11, 861–869 (2004)CrossRefGoogle Scholar
  7. 7.
    D. Grodensky, D. Kravitz, A. Zadok, Ultra-wideband microwave-photonic noise radar based on optical waveform generation. IEEE Photonics Technol. Lett. 24, 839–841 (2012)Google Scholar
  8. 8.
    S. Pappert, C. Sun, R. Orazi, T. Weiner, Microwave fiber optic links for shipboard antenna applications, in Phased Array Systems and Technology, 2000. Proceedings. 2000 IEEE International Conference (IEEE, 2000), pp. 345–348Google Scholar
  9. 9.
    R. Waterhouse, D. Novack, Realizing 5G: Microwave photonics for 5G mobile wireless systems. IEEE Microwave Mag. 16, 84–92 (2015)CrossRefGoogle Scholar
  10. 10.
    B. Cabon, Y. Le Guennec, M. Lourdiane, G. Maury, Photonic mixing in RF modulated optical links, in Lasers and Electro-Optics Society, 2006. LEOS 2006. 19th Annual Meeting of the IEEE (IEEE, 2006), pp. 408–409Google Scholar
  11. 11.
    J. Capmany, P. Munoz, Integrated microwave photonics for radio access networks. J. Lightwave Technol. 32, 2849–2861 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    H.-H. Lu, W.-S. Tsai, C.-Y. Chen, H.-C. Peng, CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation technique. IEEE Photonics Technol. Lett. 16, 2565–2567 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    H.-H. Lu, C.-L. Ying, W.-I. Lin, Y.-W. Chuang, Y.-C. Chi, S.-J. Tzeng, CATV/ROF transport systems based on light injection/optoelectronic feedback techniques and photonic crystal fiber. Opt. Commun. 273, 389–393 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, S. Sales, Microwave photonic signal processing. J. Lightwave Technol. 31, 571–586 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    R.A. Minasian, Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    R. Takahashi, T. Nakahara, K. Takahata, H. Takenouchi, T. Yasui, N. Kondo, H. Suzuki, Ultrafast optoelectronic packet processing for asynchronous, optical-packet-switched networks. J. Opt. Netw. 3, 914–930 (2004)CrossRefGoogle Scholar
  17. 17.
    L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, J. Albert, Short monolithic dual-wavelength single-longitudinal-mode DBR phosphate fiber laser. Appl. Opt. 53, 3848–3853 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    J. Zhou, L. Xia, X. Cheng, X. Dong, P. Shum, Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser. Appl. Phys. B 91, 99–103 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, Y.-C. Hwang, B.-C. Chen, C.-C. Lin, Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser. Opt. Express 22, 13125–13137 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    J. Yao, Photonics to the rescue: a fresh look at microwave photonic filters. IEEE Microw. Mag. 16, 46–60 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Harris, P. Lu, H. Larocque, Y. Xu, L. Chen, X. Bao, Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation. Opt. Express 21, 9996–10009 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    H. Qu, G. Yan, M. Skorobogatiy, Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber. Opt. Lett. 39, 4835–4838 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    R.T. Schermer, J.H. Cole, Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE J. Quantum Electron. 43, 899–909 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    D. Marcuse, Field deformation and loss caused by curvature of optical fibers. JOSA 66, 311–320 (1976)ADSCrossRefGoogle Scholar
  25. 25.
    Q. Li, C.-H. Lin, P.-Y. Tseng, H.P. Lee, Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor. Opt. Commun. 250, 280–285 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    H. Ahmad, A.A. Jasim, Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach–Zehnder interferometer. Opt. Fiber Technol. 36, 105–114 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    X. Feng, C. Lu, H.Y. Tam, P.K.A. Wai, Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser. IEEE Photonics Technol. Lett. 19, 1334–1336 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    S. Pan, C. Lou, Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation. IEEE Photonics Technol. Lett. 18, 1451–1453 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    W.C. Chang, J.H. Lin, T.Y. Liao, C.Y. Yang, Characteristics of noise-like pulse with broad bandwidth based on cascaded Raman scattering. Opt. Express 26, 31808–31816 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    L.M. Zhao, D.Y. Tang, Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser. Appl. Phys. B 83, 553 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    N.A. Ahmad, S.H. Dahlan, N.A. Cholan, H. Ahmad, I.S. Amiri, Z.C. Tiu, Dual-wavelength thulium fluoride fiber laser based on SMF–TMSIF–SMF interferometer as potential source for microwave generation in 100-GHz region. IEEE J. Quantum Electron. 54, 1–7 (2018)Google Scholar
  32. 32.
    G.-K. Chang, C. Liu, 1–100 GHz microwave photonics link technologies for next-generation WiFi and 5G wireless communications, in Microwave Photonics (MWP), 2013 International Topical Meeting (IEEE, 2013), pp. 5–8Google Scholar
  33. 33.
    J. Zhang, P. Tang, L. Tian, Z. Hu, T. Wang, H. Wang, 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci. China Inf. Sci. 60, 080301 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Zendehnam, M. Mirzaei, A. Farashiani, L.H. Farahani, Investigation of bending loss in a single-mode optical fibre. Pramana 74, 591–603 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    J. Zhou, S. Fu, F. Luan, J.H. Wong, S. Aditya, P.P. Shum, K.E.K. Lee, Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry–Perot filter-based multi-wavelength tunable laser. J. Lightwave Technol. 29, 3381–3386 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    X. Xue, Y. Xuan, H.-J. Kim, J. Wang, D.E. Leaird, M. Qi, A.M. Weiner, Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Lightwave Technol. 32, 3557–3565 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    X.-Y. Li, Y. Cao, D. Xu, Z.-R. Tong, J.-P. Yang, A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser. Optoelectron. Lett. 13, 259–262 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Science, Photonics Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Physics, Faculty of Science and TechnologyAirlangga UniversitySurabayaIndonesia

Personalised recommendations