Advertisement

Applied Physics B

, 125:94 | Cite as

Focusing light through scattering media by combining genetic and Gauss–Newton algorithms

  • Longjie Fang
  • Haoyi ZuoEmail author
  • Yihang Xu
  • Boyi Ma
Article
  • 118 Downloads

Abstract

Owing to the highly heterogeneous distributions of the components of disordered materials, light transport in such media experiences multiple light scattering. Focusing light through strongly scattering media is a significant goal in optical communication and imaging. However, a very challenging problem in such a process is the precise optimization of input wavefront, which influences the intensity and signal-to-noise ratio of the focus. This work proposes combining a genetic algorithm with the Gauss–Newton method to address this problem. Using this combined algorithm, we can efficiently obtain the correct and precise input wavefront for light scattering focus. The accuracy and stability of our proposed algorithm are verified using both numerical simulation and experiment.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant nos. 61377054 and 61675140) and Graduate Student’s Research and Innovation Fund of Sichuan University (Grant no. 2018YJSY005).

References

  1. 1.
    R. Wang, J. Wei, Y. Fan, Chalcogenide phase-change thin films used as grayscale photolithography materials. Opt. Express 22, 4973–4984 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    D. Loterie, S.A. Goorden, D. Psaltis, C. Moser, Confocal microscopy through a multimode fiber using optical correlation. Opt. Lett. 40, 5754–5757 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    S. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Image transmission through an opaque material. Nat. Commun. 1, 81 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    I.M. Vellekoop, A.P. Mosk, Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    L. Fang, X. Zhang, H. Zuo, L. Pang, Focusing light through random scattering media by four-element division algorithm. Opt. Commun. 407, 301–310 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    L. Fang, H. Zuo, L. Pang, Z. Yang, X. Zhang, J. Zhu, Image reconstruction through thin scattering media by simulated annealing algorithm. Opt. Lasers Eng. 106, 105–110 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Fang, H. Zuo, Z. Yang, X. Zhang, J. Du, L. Pang, Binary wavefront optimization using a simulated annealing algorithm. Appl. Opt. 57, 1744–1751 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    J. Yoon, K. Lee, J. Park, Y. Park, Measuring optical transmission matrices by wavefront shaping. Opt. Express 23, 10158–10167 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, Y. Park, Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A.C. Boccara, S. Gigan, Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S.M. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Controlling light through optical disordered media: transmission matrix approach. N. J. Phys. 13, 1–9 (2011)CrossRefGoogle Scholar
  12. 12.
    D.B. Conkey, A.N. Brown, A.M. Caravacaaguirre, R. Piestun, Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20, 4840–4849 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    I.M. Vellekoop, A.P. Mosk, Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101(12), 120601 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    C.L. Hsieh, Y. Pu, R. Grange, D. Psaltis, Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    I.M. Vellekoop, M. Cui, C. Yang, Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 101, 081108 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Yaqoob, D. Psaltis, M.S. Feld, C. Yang, Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. 2(2), 110–115 (2008)ADSCrossRefGoogle Scholar

For transmission matrix approaches:

  1. 17.
    A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, L. Daudet, Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23, 11898 (2015)ADSCrossRefGoogle Scholar
  2. 18.
    M. Kim, W. Choi, Y. Choi, C. Yoon, W. Choi, Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express 23, 12648 (2015)ADSCrossRefGoogle Scholar
  3. 19.
    J. Xu, H. Ruan, Y. Liu, H. Zhou, C. Yang, Focusing light through scattering media by transmission matrix inversion. Opt. Express 25, 27234 (2017)ADSCrossRefGoogle Scholar
  4. 20.
    D.H. Kim, A. Abraham, A hybrid genetic algorithm and bacterial foraging approach for global optimization and robust tuning of PID controller with disturbance rejection. Inf. Sci. Int. J. 177, 3918–3937 (2007)Google Scholar
  5. 21.
    M. Qian, Z. Haoyi, W. Yanling, L. Liang, C. Wenjin, H. Xiaoxue, L. Shirong, Analysis of charge-exchange spectroscopy data by combining genetic and Gauss–Newton algorithms. J. Quant. Spectrosc. Radiat. Transfer 166, 74–80 (2015)ADSCrossRefGoogle Scholar
  6. 22.
    X.X. Shao, X.J. Dai, X.Y. He, Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation. Opt. Lasers Eng. 71, 9–19 (2015)CrossRefGoogle Scholar
  7. 23.
    Y. Su, Q. Zhang, X. Xu, Z. Gao, S. Wu, Interpolation bias for the inverse compositional Gauss–Newton algorithm in digital image correlation. Opt. Lasers Eng. 100, 267–278 (2018)CrossRefGoogle Scholar
  8. 24.
    J. Goodman, Speckle Phenomena in Optics, vol. 2 (Roberts & Company, Englewood, 2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physical Science and TechnologySichuan UniversityChengduChina
  2. 2.Key Laboratory of High Energy Density Physics and Technology of Ministry of EducationSichuan UniversityChengduChina

Personalised recommendations