Advertisement

Applied Physics B

, 125:90 | Cite as

Hydroxyl radical planar imaging in flames using femtosecond laser pulses

  • Yejun Wang
  • Ayush Jain
  • Waruna KulatilakaEmail author
Article
  • 87 Downloads

Abstract

Hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) imaging is one of the most widely used laser diagnostic techniques to investigate reacting flows such as flames and plasmas. In conventional PLIF experiments, 10-Hz, commercial Nd:YAG/dye-laser-based systems are often used for OH excitation. In recent years, significant developments are also reported in using diode-pumped solid-state and pulse-burst laser systems for high-repetition-rate (kHz–MHz) measurements. In general, all these laser sources generate nanosecond-duration, narrowband laser pulses which are to be tuned to a specific ro-vibrational excitation transition line. In the present work, we investigate the use of broadband, ultrashort femtosecond-duration (fs) laser pulses for OH-PLIF imaging in flames. The fs excitation of the OH A2Ʃ+ ← X2∏ (1, 0) transition is followed by fluorescence detection from the (0, 0) and (1, 1) vibrational bands. Because of the broad bandwidth, the excitation laser is coupled to a large number of OH ro-vibrational transitions at the same time; hence, species selectivity is obtained by detecting fluorescence emission in the 310–325 nm spectral window. This scheme is shown to be free from fluorescence from other flame species as confirmed by high-resolution fluorescence spectra recorded under a variety of flame conditions. Measured OH number density profiles in CH4, C2H4 and H2 calibration flames are in good agreement with model predictions. Two-dimensional imaging of OH at 1-kHz repetition rate is also demonstrated in a turbulent diffusion flame. The present fs OH-PLIF scheme can find novel applications in fundamental chemical physics research, as well as in practical engine combustion and flame diagnostics.

Notes

Acknowledgements

Funding support from the National Science Foundation (NSF) (Contract No. CBET-1604633), and the Office of Naval Research (ONR) (Contract No. N00014-16-1-2578).

References

  1. 1.
    I. Boxx, C. Slabaugh, P. Kutne, R.P. Lucht, W. Meier, Proc. Combust. Inst. 35, 793 (2015)CrossRefGoogle Scholar
  2. 2.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (CRC Press, Boca Raton, 1996), p. 630Google Scholar
  3. 3.
    J.W. Daily, Prog. Energy Combust. Sci. 23, 133 (1997)CrossRefGoogle Scholar
  4. 4.
    J.R. Osborne, S.A. Ramji, C.D. Carter, S. Peltier, S. Hammack, T. Lee, A.M. Steinberg, Exp. Fluids 57, 57 (2016)CrossRefGoogle Scholar
  5. 5.
    W.D. Kulatilaka, P.S. Hsu, J.R. Gord, S. Roy, Opt. Lett. 36, 1818 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    J. Kiefer, Z.S. Li, J. Zetterberg, X.S. Bai, M. Aldén, Combust. Flame 154, 802 (2008)CrossRefGoogle Scholar
  7. 7.
    M.J. Dyer, D.R. Crosley, Opt. Lett. 7, 382 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    B.R. Halls, P.S. Hsu, N. Jiang, E.S. Legge, J.J. Felver, M.N. Slipchenko, S. Roy, T.R. Meyer, J.R. Gord, Optica 4, 897 (2017)CrossRefGoogle Scholar
  9. 9.
    W. Cai, X. Li, L. Ma, Appl. Opt. 52, 8106 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    M. Jonsson, A. Ehn, M. Christensen, M. Alden, J. Bood, Appl. Phys. B Lasers Opt. 115, 35 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Frank, S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 29, 687 (2002)CrossRefGoogle Scholar
  12. 12.
    K.L. Steffens, J. Luque, J.B. Jeffries, D.R. Crosley, J. Chem. Phys. 106, 6262 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    A. Matynia, M. Idir, J. Molet, C. Roche, S. de Persis, L. Pillier, Appl. Phys. B 108, 393 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J. Kojima, Q.-V. Nguyen, Phys. Lett. 396, 323 (2004)Google Scholar
  15. 15.
    J.E.M. Goldsmith, N.M. Laurendeau, Appl. Opt. 25, 276 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    D.R. Crosley, G.P. Smith, J. Chem. Phys. 79, 4764 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    R. Borghi, S.N.B. Murthy, (Springer, New York, 1989)Google Scholar
  18. 18.
    L. Ma, Q. Lei, T. Capil, S.D. Hammack, C.D. Carter, Opt. Lett. 42, 267 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    B. Thurow, N. Jiang, W. Lempert, Meas. Sci. Technol. 24, 1 (2013)CrossRefGoogle Scholar
  20. 20.
    T.B. Settersten, A. Dreizler, R.L. Farrow, J. Chem. Phys. 117, 3173 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    W.D. Kulatilaka, J.R. Gord, V.R. Katta, S. Roy, Opt. Lett. 37, 3051 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    W.D. Kulatilaka, S. Roy, N. Jiang, J.R. Gord, Appl. Phys. B 122, 1 (2016)CrossRefGoogle Scholar
  23. 23.
    H.U. Stauffer, W.D. Kulatilaka, J.R. Gord, S. Roy, Opt. Lett. 36, 1776 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Wang, W.D. Kulatilaka, Appl. Phys. B 124, 1 (2018)ADSGoogle Scholar
  25. 25.
    Y. Wang, C. Capps, W.D. Kulatilaka, Opt. Lett. 42, 711 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    S.V. Naik, N.M. Laurendeau, Appl. Phys. B 79, 641 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    O. Carrivain, M. Orain, N. Dorval, C. Morin, G. Legros, Appl. Spectrosc. 71, 2353 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    S. Candel, G. Singla, P. Scouflaire, C. Rolon, L. Vingert, J. Propuls. Power 23, 593 (2007)CrossRefGoogle Scholar
  29. 29.
    J. Luque, D.R. Crosley, SRI International Report MP 99-009 (1999)Google Scholar
  30. 30.
    D.G. Goodwin, H.K. Moffat, R.L. Speth, Version 2.3.0 (2017), http://www.cantera.org
  31. 31.
    T.R. Meyer, S. Roy, T.N. Anderson, J.D. Miller, V.R. Katta, R.P. Lucht, J.R. Gord, Appl. Opt. Opt. 44, 6729 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    W.D. Kulatilaka, R.P. Lucht, S.F. Hanna, V.R. Katta, Combust. Flame 137, 523 (2004)CrossRefGoogle Scholar
  33. 33.
    U. Retzer, R. Pan, T. Werblinski, F.J. Huber, M.N. Slipchenko, T.R. Meyer, L. Zigan, S. Will, Opt. Exp. 26, 18105 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Wang, P. Stamatoglou, Z. Li, M. Alden, M. Richter, Opt. Exp. 25, 30214 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    P. Beaud, P.P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, T. Gerber, Appl. Opt. 37, 3354 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    X. Chen, T.B. Settersten, Appl. Opt. 46, 3911 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    R. Kienle, M.P. Lee, K. Kohse-Höinghaus, Appl. Phys. B 62, 583 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    P.H. Paul, J.L. Durant, J.A. Gray, M.R. Furlanetto, J. Chem. Phys. 102, 8378 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    U. Rahmann, W. Kreutner, K. Kohse-Höinghaus, Appl. Phys. B 69, 61 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.J. Mike Walker ’66 Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations