Applied Physics B

, 125:89 | Cite as

Guiding and controlling light at nanoscale in field effect transistor

  • Lalit SinghEmail author
  • Surbhi Tidke
  • Mukesh Kumar


Metal–oxide–semiconductor field-effect transistor (MOSFET) and tunnel field-effect transistor (TFET) are proposed to guide and control the light at nanoscale utilizing the hybridization of plasmonic and optical modes. The hybrid plasmonic (HP) mode is confined in the dielectric sandwiched between the metal gate and semiconductor channel, which results from the coupling of surface plasmonic polariton mode at the metal–dielectric interface with the optical mode in the dielectric. Conventional conductivity modulations in the channel through gate and drain–source voltages are utilized to control the guided light. A long propagation length of 74 μm and a very small mode area of \(\lambda ^2/96\) are reported for field-effect transistor at an operating wavelength of 1550 nm which are useful to realize low loss and compact optoelectronic devices. The charge-carrier dynamics along with the plasma dispersion effect in the silicon channel, through voltages applied on the gate and source–drain, result in the optical phase modulation in MOSFET and TFET. Phase shift of \(\pi\) radian at a length of 1.2 mm and 0.21 mm is obtained in MOSFET and TFET, respectively. The proposed concept has the potential to enable multifunctionality of the mature field effect transistors.



This work was supported in part by the Science and Engineering Research Board, India (SERB), YSS/2014/0000089, and in part by the Defence Research and Development Organization, India (DRDO) (ERIP/ER/1303134/M/01/1616).


  1. 1.
    H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R.T. Chen, Recent advances in silicon-based passive and active optical interconnects. Opt. Express 23(3), 2487–2511 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    R. Soref, The past, present, and future of silicon photonics. IEEE J. Select. Top. Quantum Electron. 12(6), 1678–1687 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    T. Barwicz, H. Byun, F. Gan, C. Holzwarth, M. Popovic, P. Rakich, M. Watts, E. Ippen, F. Kärtner, H. Smith et al., Silicon photonics for compact, energy-efficient interconnects. J. Opt. Netw. 6(1), 63–73 (2007)CrossRefGoogle Scholar
  4. 4.
    M.A. Taubenblatt, Optical interconnects for high-performance computing. J. Lightwave Technol. 30(4), 448–457 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S.J. Koester, C.L. Schow, L. Schares, G. Dehlinger, J.D. Schaub, F.E. Doany, R.A. John, Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications. J. Lightwave Technol. 25(1), 46–57 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    J.S. Levy, A. Gondarenko, M.A. Foster, A.C. Turner-Foster, A.L. Gaeta, M. Lipson, Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4(1), 37 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    C. Gunn, Cmos photonics for high-speed interconnects. IEEE Micro 26(2), 58–66 (2006)CrossRefGoogle Scholar
  8. 8.
    R. Kirchain, L. Kimerling, A roadmap for nanophotonics. Nat. Photon. 1(6), 303 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    G.T. Reed, G. Mashanovich, F.Y. Gardes, D. Thomson, Silicon optical modulators. Nat. Photon. 4(8), 518 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    J. Michel, J. Liu, L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photon. 4(8), 527 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A.W. Fang, B.R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, J.E. Bowers, A distributed bragg reflector silicon evanescent laser. IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    A.H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M.T. Wade, C. Sun, S.A. Kruger, H. Meng et al., Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556(7701), 349 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    S. Rajput, V. Kaushik, S. Jain, M. Kumar, Slow light enhanced phase-shifter based on low-loss silicon-ITO hollow waveguide. IEEE Photon. J. 11, 1–8 (2019)CrossRefGoogle Scholar
  14. 14.
    S. Jain, S. Rajput, V. Kaushik, M. Kumar, High speed optical modulator based on silicon slotted-rib waveguide. Opt. Commun. 434, 49–53 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    K. Liu, S. Sun, A. Majumdar, V.J. Sorger, Fundamental scaling laws in nanophotonics. Sci. Rep. 6, 37419 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Ma, M.H. Tahersima, S. Khan, V.J. Sorger, Two-dimensional material-based mode confinement engineering in electro-optic modulators. IEEE J. Select. Top. Quantum Electron. 23(1), 81–88 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    J. Dionne, H. Lezec, H.A. Atwater, Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett. 6(9), 1928–1932 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9(3), 193 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    R.F. Oulton, V.J. Sorger, D. Genov, D. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photon. 2(8), 496 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Alam, J.S. Aitchison, M. Mojahedi, Theoretical analysis of hybrid plasmonic waveguide. IEEE J. Select. Top. Quantum Electron. 19(3), 4602008 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    L. Singh, T. Sharma, M. Kumar, Controlled hybridization of plasmonic and optical modes for low-loss nano-scale optical confinement with ultralow dispersion. IEEE J. Quantum Electron. 54(2), 1–5 (2018)CrossRefGoogle Scholar
  23. 23.
    T. Sharma, L. Singh, M. Kumar, Nanophotonic ultrashort coupler based on hybrid plasmonic waveguide with lateral subwavelength grating. IEEE Trans. Nanotechnol. 15(6), 931–935 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    C.A. Barrios, V.R. de Almeida, M. Lipson, Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator. J. Lightwave Technol. 21(4), 1089 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427(6975), 615 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M. Lumerical, Solutions (2016).
  27. 27.
    P.B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Kou, F. Ye, X. Chen, Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration. Opt. Express 19(12), 11746–11752 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S.R. Giguere, L. Friedman, R.A. Soref, J.P. Lorenzo, Simulation studies of silicon electro-optic waveguide devices. J. Appl. Phys. 68(10), 4964–4970 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Optoelectronic Nanodevice Research Laboratory, Department of Electrical EngineeringIIT IndoreIndoreIndia

Personalised recommendations