Advertisement

Applied Physics B

, 125:93 | Cite as

Quasi-in-situ sizing of nanoparticles by laser-induced incandescence during the floating chemical vapor deposition synthesis of carbon nanotubes

  • Yiguo Xu
  • Yang Ma
  • Delong HeEmail author
  • Hanlu Zhang
  • Laurent Zimmer
  • Anthony Dichiara
  • Paul Haghi-Ashtiani
  • Jinbo BaiEmail author
Article
  • 89 Downloads
Part of the following topical collections:
  1. Laser-Induced Incandescence

Abstract

In this study, laser-induced incandescence (LII) diagnostic technique was applied for iron-based nanoparticle (NP) sizing during the floating chemical vapor deposition (CVD) synthesis of carbon nanotubes (CNTs). Transmission electron microscopy (TEM) was used to characterize the nature and size of NPs. The LII signal was simulated by taking into account the carbon-encapsulated iron NP density, heat capacity, size distribution, etc. A detailed sensitivity and uncertainty of the key parameters on the evaluated particle size for this model has also been estimated. Using the developed approach, the evolution of NPs in the gas phase along the reactor axis was investigated at 650, 750 and 850 °C. It was found that the evaluated sizes from LII signals were in good agreement with the ones obtained by TEM measurements. The NP size is highly dependent on the temperature under the studied conditions but it does not show obvious difference along the reactor axis. This study reveals an important LII application prospect to understand the catalyst particle behaviors for better control over CNT growth during the floating CVD process.

Notes

Acknowledgements

This work was carried out within the MATMECA consortium and supported by the ANR under contract number ANR-10-EQPX-37. Y. Xu gratefully acknowledges the financial support of China Scholarship Council (CSC). The authors thank Mr. Xiangtuo Chen for the helpful discussion.

Supplementary material

340_2019_7201_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2299 kb)

References

  1. 1.
    A.B. Dichiara, J. Yuan, S. Yao, A. Sylvestre, L. Zimmer, J. Bai, J. Mater. Chem. A 2(21), 7980 (2014)Google Scholar
  2. 2.
    Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, Small 9(8), 1237 (2013)Google Scholar
  3. 3.
    A.B. Dichiara, S.F. Harlander, R.E. Rogers, RSC Adv. 5(76), 61508 (2015)Google Scholar
  4. 4.
    Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, M.A. Atieh, Sep. Purif. Technol. 157, 141 (2016)Google Scholar
  5. 5.
    W. Li, A. Dichiara, J. Bai, Compos. Sci. Technol. 74, 221 (2013)Google Scholar
  6. 6.
    G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, W.R. Lee, J. Ind. Eng. Chem. 21, 11 (2015)Google Scholar
  7. 7.
    V. Jourdain, C. Bichara, Carbon 58, 2 (2013)Google Scholar
  8. 8.
    R. Guzmán de Villoria, A.J. Hart, B.L. Wardle, ACS Nano 5(6), 4850 (2011)Google Scholar
  9. 9.
    T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D.N. Futaba, M. Yumura, S. Iijima, K. Hata, Nano Lett. 8(12), 4288 (2008)Google Scholar
  10. 10.
    A. Moisala, A.G. Nasibulin, E.I. Kauppinen, J. Phys. Condens. Matter 15(42), S3011 (2003)Google Scholar
  11. 11.
    C. Castro, M. Pinault, S. Coste-Leconte, D. Porterat, N. Bendiab, C. Reynaud, M. Mayne-L’Hermite, Carbon 48(13), 3807 (2010)Google Scholar
  12. 12.
    Q. Zhang, J.Q. Huang, M.Q. Zhao, W.Z. Qian, F. Wei, Appl. Phys. A Mater. Sci. Process. 94(4), 853 (2009)Google Scholar
  13. 13.
    C. Castro, M. Pinault, D. Porterat, C. Reynaud, M. Mayne-L’Hermite, Carbon 61, 585 (2013)Google Scholar
  14. 14.
    C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, J. Phys. Chem. B 106(10), 2429 (2002)Google Scholar
  15. 15.
    R. Rao, D. Liptak, T. Cherukuri, B.I. Yakobson, B. Maruyama, Nat. Mater. 11(3), 213 (2012)Google Scholar
  16. 16.
    Y. Liu, A. Dobrinsky, B.I. Yakobson, Phys. Rev. Lett. 105(23), 235502 (2010)Google Scholar
  17. 17.
    R.L.V. Wal, D.L. Dietrich, Appl. Opt. 34(6), 1103 (1995)Google Scholar
  18. 18.
    R.W. Weeks, W.W. Duley, J. Appl. Phys. 45(10), 4661 (1974)Google Scholar
  19. 19.
    A.C. Eckbreth, J. Appl. Phys. 48(11), 4473 (1977)Google Scholar
  20. 20.
    L.A. Melton, Appl. Opt. 23(13), 2201 (1984)Google Scholar
  21. 21.
    P. Roth, A. Filippov, J. Aerosol Sci. 27(1), 95 (1996)Google Scholar
  22. 22.
    A. Filippov, M. Markus, P. Roth, J. Aerosol Sci. 30(1), 71 (1999)Google Scholar
  23. 23.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20(22), 2342 (1995)Google Scholar
  24. 24.
    R.L. Vander Wal, M.Y. Choi, Carbon 37(2), 231 (1999)Google Scholar
  25. 25.
    B. Axelsson, R. Collin, P.E. Bengtsson, Appl. Opt. 39(21), 3683 (2000)Google Scholar
  26. 26.
    H. Bladh, P.E. Bengtsson, Appl. Phys. B 78(2), 241 (2004)Google Scholar
  27. 27.
    D. Snelling, K. Thomson, F. Liu, G. Smallwood, Appl. Phys. B 96(4), 657 (2009)Google Scholar
  28. 28.
    H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42(27), 5577 (2003)Google Scholar
  29. 29.
    H.A. Michelsen, J. Chem. Phys. 118(15), 7012 (2003)Google Scholar
  30. 30.
    S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, Chem. Eng. Technol. 26(9), 966 (2003)Google Scholar
  31. 31.
    R.L. Vander Wal, G.M. Berger, T.M. Ticich, P.D. Patel, Appl. Opt. 41(27), 5678 (2002)Google Scholar
  32. 32.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44(31), 6773 (2005)Google Scholar
  33. 33.
    B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147(1–2), 79 (2006)Google Scholar
  34. 34.
    A. Leipertz, S. Dankers, Part. Part. Syst. Charact. 20(2), 81 (2003)Google Scholar
  35. 35.
    Y. Murakami, T. Sugatani, Y. Nosaka, J. Phys. Chem. A 109(40), 8994 (2005)Google Scholar
  36. 36.
    T. Sipkens, G. Joshi, K. Daun, Y. Murakami, J. Heat Transf. 135(5), 052401 (2013)Google Scholar
  37. 37.
    A. Eremin, E. Gurentsov, Appl. Phys. A 119(2), 615 (2015)Google Scholar
  38. 38.
    L. Landström, P. Heszler, J. Phys. Chem. B 108(20), 6216 (2004)Google Scholar
  39. 39.
    R.L. Vander Wal, T.M. Ticich, J.R. West, Appl. Opt. 38(27), 5867 (1999)Google Scholar
  40. 40.
    R. Starke, B. Kock, P. Roth, Shock Waves 12(5), 351 (2003)Google Scholar
  41. 41.
    A. Eremin, E. Gurentsov, C. Schulz, J. Phys. D Appl. Phys. 41(5), 055203 (2008)Google Scholar
  42. 42.
    A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Appl. Phys. B 104(2), 285 (2011)Google Scholar
  43. 43.
    B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30(1), 1689 (2005)Google Scholar
  44. 44.
    A. Eremin, E. Gurentsov, E. Mikheyeva, K. Priemchenko, Appl. Phys. B 112(3), 421 (2013)Google Scholar
  45. 45.
    T. Sipkens, N. Singh, K. Daun, N. Bizmark, M. Ioannidis, Appl. Phys. B 119(4), 561 (2015)Google Scholar
  46. 46.
    L. Landström, K. Elihn, M. Boman, C. Granqvist, P. Heszler, Appl. Phys. A 81(4), 827 (2005)Google Scholar
  47. 47.
    J. Knipping, H. Wiggers, B. Kock, T. Hülser, B. Rellinghaus, P. Roth, Nanotechnology 15(11), 1665 (2004)Google Scholar
  48. 48.
    A.V. Eremin, E.V. Gurentsov, S.A. Musikhin, Mater. Res. Express 3(10), 105041 (2016)Google Scholar
  49. 49.
    A. Eremin, E. Gurentsov, S. Musikhin, J. Alloys Compd 727, 711 (2017)Google Scholar
  50. 50.
    E. Cenker, G. Bruneaux, L. Pickett, C. Schulz, SAE Int. J. Eng. 6(1), 352 (2013)Google Scholar
  51. 51.
    R. Ryser, T. Gerber, T. Dreier, Combust. Flame 156(1), 120 (2009)Google Scholar
  52. 52.
    B. Bougie, M. Tulej, T. Dreier, N. Dam, J. Ter Meulen, T. Gerber, Appl. Phys. B 80(8), 1039 (2005)Google Scholar
  53. 53.
    H. Oltmann, J. Reimann, S. Will, Combust. Flame 157(3), 516 (2010)Google Scholar
  54. 54.
    T.D. Durbin, K. Johnson, D.R. Cocker, J.W. Miller, H. Maldonado, A. Shah, C. Ensfield, C. Weaver, M. Akard, N. Harvey et al., Environ. Sci. Technol. 41(17), 6199 (2007)Google Scholar
  55. 55.
    G.J. Smallwood, D. Clavel, D. Gareau, R.A. Sawchuk, D.R. Snelling, P.O. Witze, B. Axelsson, W.D. Bachalo, Ö.L. Gülder, SAE Trans. 111, 1345–1360 (2002)Google Scholar
  56. 56.
    M. Johnson, M. Hilton, D. Waterman, J. Black, Meas. Sci. Technol. 14(7), 1146 (2003)Google Scholar
  57. 57.
    P.O. Witze, SAE Trans. 111, 661–672 (2002)Google Scholar
  58. 58.
    J.D. Black, M. Hilton, M.P. Johnson, D. Waterman, in Laser Applications in Medicine, Biology, and Environmental Science, vol. 5149 (International Society for Optics and Photonics, 2003), pp. 265–273Google Scholar
  59. 59.
    M. Cau, N. Dorval, B. Attal-Trétout, J.L. Cochon, A. Foutel-Richard, A. Loiseau, V. Krüger, M. Tsurikov, C.D. Scott, Phys. Rev. B 81, 165416 (2010)Google Scholar
  60. 60.
    S. Yatom, J. Bak, A. Khrabryi, Y. Raitses, Carbon 117, 154 (2017)Google Scholar
  61. 61.
    Y. Xu, Y. Ma, Y. Liu, S. Feng, D. He, P. Haghi-Ashtiani, A. Dichiara, L. Zimmer, J. Bai, J. Phys. Chem. C 122(11), 6437 (2018)Google Scholar
  62. 62.
    B. Satishkumar, A. Govindaraj, R. Sen, C. Rao, Chem. Phys. Lett. 293(1), 47 (1998)Google Scholar
  63. 63.
    R. Xiang, E. Einarsson, J. Okawa, Y. Miyauchi, S. Maruyama, J. Phys. Chem. C 113(18), 7511 (2009)Google Scholar
  64. 64.
    D. He, M. Bozlar, M. Genestoux, J. Bai, Carbon 48(4), 1159 (2010)Google Scholar
  65. 65.
    A. Dichiara, J. Bai, Diam. Relat. Mater. 29, 52 (2012)Google Scholar
  66. 66.
    D.W. Marquardt, J. Soc. Ind. Appl. Math. 11(2), 431 (1963)Google Scholar
  67. 67.
    E.V. Gurentsov, A.V. Eremin, High Temp. 49(5), 667 (2011)Google Scholar
  68. 68.
    E. Gurentsov, A. Eremin, P. Roth, R. Starke, Kinet. Catal. 46(3), 309 (2005)Google Scholar
  69. 69.
    I.M. Sobol, Math. Model. Comput. Exp. 1(4), 407 (1993)Google Scholar
  70. 70.
    I.M. Sobol, Math. Comput. Simul. 55(1–3), 271 (2001)Google Scholar
  71. 71.
    J. Nossent, P. Elsen, W. Bauwens, Environ. Model. Softw. 26(12), 1515 (2011)Google Scholar
  72. 72.
    G. Glen, K. Isaacs, Environ. Model. Softw. 37, 157 (2012)Google Scholar
  73. 73.
    K. Kuwana, K. Saito, Proc. Combust. Inst. 31(2), 1857 (2007)Google Scholar
  74. 74.
    D. Conroy, A. Moisala, S. Cardoso, A. Windle, J. Davidson, Chem. Eng. Sci. 65(10), 2965 (2010)Google Scholar
  75. 75.
    S. Futko, B. Shulitskii, V. Labunov, E. Ermolaeva, J. Eng. Phys. Thermophys. 88(6), 1432 (2015)Google Scholar
  76. 76.
    Y. Ma, A.B. Dichiara, D. He, L. Zimmer, J. Bai, Carbon 107, 171 (2016)Google Scholar
  77. 77.
    P. Ho, M.E. Coltrin, W.G. Breiland, J. Phys. Chem. 98(40), 10138 (1994)Google Scholar
  78. 78.
    Y. Nozaki, K. Kongo, T. Miyazaki, M. Kitazoe, K. Horii, H. Umemoto, A. Masuda, H. Matsumura, J. Appl. Phys. 88(9), 5437 (2000)Google Scholar
  79. 79.
    C. Kaminski, P. Ewart, Appl. Phys. B 61(6), 585 (1995)Google Scholar
  80. 80.
    S. Yatom, A. Khrabry, J. Mitrani, A. Khodak, I. Kaganovich, V. Vekselman, B. Stratton, Y. Raitses, MRS Commun. 8(3), 842 (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yiguo Xu
    • 1
  • Yang Ma
    • 2
  • Delong He
    • 1
    Email author
  • Hanlu Zhang
    • 1
  • Laurent Zimmer
    • 3
  • Anthony Dichiara
    • 4
  • Paul Haghi-Ashtiani
    • 1
  • Jinbo Bai
    • 1
    Email author
  1. 1.Laboratoire MSSMat, CNRS UMR 8579, CentraleSupélecUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and EngineeringBeihang UniversityBeijingChina
  3. 3.Laboratoire EM2C, CNRS UPR 288, CentraleSupélecUniversité Paris-SaclayGif-sur-YvetteFrance
  4. 4.School of Environmental and Forest Sciences (SEFS)University of WashingtonSeattleUSA

Personalised recommendations