Advertisement

Applied Physics B

, 125:92 | Cite as

Efficient Er:Ti:LiNbO3 ridge waveguide amplifier by patterning As2S3 layer

  • K. Ahmadi
  • A. ZakeryEmail author
  • G. M. Parsanasab
Article
  • 61 Downloads

Abstract

In this study, the effect of As2S3 waveguide layer on propagation gain for Er:Ti:LiNbO3 ridge waveguide amplifiers is investigated. In comparison with a typical titanium in-diffused channel waveguide, the three side Erbium in-diffusion of a 6 μm wide ridge waveguide and the better light confinement has improved the overlap between Er concentration and guided mode profiles up to 2.58 times. Our simulation demonstrates that by purposely adjusting the thickness of the three side As2S3 layer it is possible to pull the guided mode towards the ridge/air interface where Er concentration is higher. Consequently in this new configuration by taking advantage of the high refractive index As2S3 layer and mode de-shaping, the overlap relative to a ridge free of As2S3 layer has increased by 1.5 times thereby gain coefficient has been improved from 3.2 to 4.28 dB/cm at a coupled pump power of 200 mW. In comparison with a typical Ti channel waveguide amplifier, the relative overlap has increased by 3.88 times resulting in noticeable gain improvement from 0.65 to 4.28 dB/cm under the same Er diffusion conditions.

Notes

References

  1. 1.
    R.G. Hunsperger, Integrated optics: theory and technology (Springer, Berlin, 2009)CrossRefGoogle Scholar
  2. 2.
    M. Dinand, W. Sohler, IEEE J. Quantum Electron. 30, 1267 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    D.L. Zhang, F. Han, B. Chen, P.R. Hua, D.Y. Yu, E.Y.B. Pun, J. Lightwave Technol. 32, 135 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, H. Suche, IEEE J. Quantum Electron. 30, 2356 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    D.L. Zhang, P.R. Hua, E.Y.B. Pun, Opt. Commun. 279, 64 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, S. Westenhofer, IEEE J. Quantum Electron. 32, 1695 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    P. Becker, R. Brinkmann, M. Dinand, W. Sohler, H. Suche, Appl. Phys. Lett. 61, 1257 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    A. Zakery, S.R. Elliot, J. Non-Cryst. Solids 330, 1 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Zhou, X. Xia, W.T. Snider, J.H. Kim, Q. Chen, W.C. Tan, C.K. Madsen, IEEE Photonics Technol. Lett. 23, 1195 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    M.E. Solmaz, D.B. Adams, W.C. Tan, W.T. Snider, C.K. Madsen, Opt. Lett. 34, 1735 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    K. Kishioka, T. Kishimoto, K. Kume, IEICE Trans. Electron E88-C, 1041 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    X. Song, W. Tan, W.T. Snider, X. Xia, C.K. Madsen, IEEE Photonics J. 3, 686 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    H. Hue, R. Ricken, W. Sohler, R.B. Wehrspohn, IEEE Photonics Technol. Lett. 19, 417 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    P. Rabiei, W.H. Steier, Appl. Phys. Lett. 86, 161115 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    S. Suntsov, C.E. Ruter, D. Kip, Appl. Phys. B 118, 1234 (2017)Google Scholar
  16. 16.
    D. Brusk, S. Suntsov, C.E. Ruter, D. Kip, Opt. Express 25, 29374 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    A.A.M. Saleh, R.M. Jopson, J.D. Evankow, J. Aspell, IEEE Photonics Technol. Lett. 2, 714 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    C.R. Giles, E. Desurvire, J. Lightwave Technol. 9, 271 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Sun, G. Luo, J.L. Zyskind, A.A.M. Saleh, A.K. Srivastava, J.W. Sulhoff, Electron. Lett. 32, 1490 (1996)CrossRefGoogle Scholar
  20. 20.
    C.H. Huang, D.M. Gill, L. McCaughan, J. Lightwave Technol. 12, 803 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Sun, J.L. Zyskind, A.K. Srivastava, IEEE J. Sel. Top. Quantum Electron. 3, 991 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    C.H. Huang, L. McCaughan, IEEE J. Sel. Top. Quantum Electron. 2, 367 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    K. Vu, K. Yan, Z. Jin, X. Gai, D.-Y. Choi, S. Debbarma, B. Luther-Davis, S. Madden, Opt. Lett. 38, 1766 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, College of SciencesShiraz UniversityShirazIran
  2. 2.Electrical Engineering FacultyShahid Beheshti UniversityTehranIran

Personalised recommendations