Applied Physics B

, 125:74 | Cite as

Evaluation of LIBS under controlled atmosphere to quantify cadmium at low concentration in landfill leachates

  • Carlos R. MenegattiEmail author
  • Gustavo Nicolodelli
  • Giorgio S. Senesi
  • Otavio A. da Silva
  • Hélcio J. I. Filho
  • Paulino R. Villas-Boas
  • Bruno S. Marangoni
  • Débora M. B. P. Milori


Laser-induced breakdown spectroscopy (LIBS) is a fast, relatively simple and precise alternative technique to measure heavy metal concentrations in solid, liquid and gaseous materials with limits of detection compatible with the recommended values for soil and water quality criteria. In this paper, a conventional LIBS apparatus has been used for the quantitative analysis of cadmium (Cd) in a landfill leachate under controlled atmospheric and reduced pressure (100 Torr) conditions. LIBS analysis was performed using a background correction and the sum of the areas above the three Cd transitions peaks (Cd II at 214.44 nm; Cd II at 226.50 nm and Cd I at 228.80 nm). Under reduced pressure the linear correlation of the calibration curve increased from 0.96 to 0.99, with respect to the atmospheric pressure. The limit of detection for Cd improved by a factor of 5, from 5 to 1 mg kg−1, and the concentrations measured by LIBS were assessed by complementary induced coupled plasma-optical emission spectroscopy (ICP-OES). These results indicated that LIBS under controlled atmosphere can be recommended for the analytical quantification of Cd in landfill leachates.



The authors acknowledge the financial support for this work provided by the CNPq (Grant numbers: 403405/2013-0, 458981/2014-1, 461743/2014-0, 312376/2017-0, 150087/2017-9) and São Paulo Research Foundation (FAPESP) (2017/19248-3, 2013/07276-1).


  1. 1.
    P. Jozef, Minerals Yearbook: Cadmium, U.S. Geological Survey, (2000), Accessed 03 Aug 2018
  2. 2.
    B. Susan, M. Paner, Pollution Prevention and Management Strategies for Cadmium in the New York/New Jersey Harbor, New York Academy of Sciences, NY (2003),
  3. 3.
    J. Luevano, C. Damodaran, J. Environ. Pathol. Toxicol. Oncol. 33(3), 183–194 (2014)CrossRefGoogle Scholar
  4. 4.
    F. Rahim, A. Jalali, R. Tangestani, Asian Pac. J. Cancer Prev. 14(7), 4283–4287 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Tellez-Plaza, M.R. Jones, A. Dominguez-Lucas, E. Guallar, A. Navas-Acien, Curr. Atheroscler. Rep. 15(10), 356 (2013). CrossRefGoogle Scholar
  6. 6.
    K.A. James, J.R. Meliker, Int. J. Public Health 58(5), 737–745 (2013)CrossRefGoogle Scholar
  7. 7.
    C.R. Menegatti, G. Nicolodelli, G.S. Senesi, O.A. da Silva, H.J.I. Filho, P.R. Villas Boas, B.S. Marangoni, D.M.B.P. Milori, Appl. Opt 56, 3730–3735 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    G. Gauglitz, T. Vo-Dinh, Handbook of Spectroscopy (Wiley-VCH, New York, 2003)CrossRefGoogle Scholar
  9. 9.
    B. Beckhoff, B. Kanngieber, N. Langhoff, R. Wedell, H. Wolff, Handbook of Practical X-Ray Fluorescence Analysis (Springer, New York, 2006)CrossRefGoogle Scholar
  10. 10.
    A. Argyraki, M.H. Ramsey, P.J. Potts, A. Argyraki, M.H. Ramsey, P.J. Potts, Analyst 122, 743–749 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    P. Kurup, C. Sullivan, R. Hannagan, S. Yu, H. Azimi, S. Robertson, D. Ryan, R. Nagarajan, T. Ponrathnam, G. Howe, Indian Geotech J 47, 421–436 (2017)CrossRefGoogle Scholar
  12. 12.
    S.S. Tahir, R. Naseem, Sep. Purif. Technol. 53, 312–321 (2017)CrossRefGoogle Scholar
  13. 13.
    U. Rafique, A. Ashraf, A.K. Khan, S. Nasreen, R. Rashid, Q. Mahmood, J. Chem. Soc. Pak. 32, 644–649 (2010)Google Scholar
  14. 14.
    F.E. Smith, E.A. Arsenault, Talanta 43, 1207–1268 (1996)CrossRefGoogle Scholar
  15. 15.
    R. Noll, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Springer, Berlin, 2012)CrossRefGoogle Scholar
  16. 16.
    D.W. Hahn, N. Omenetto, Appl. Spectrosc. 64, 335A–366A (2010)ADSCrossRefGoogle Scholar
  17. 17.
    D.W. Hahn, N. Omenetto, Appl. Spectrosc 66, 347–419 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    N.B. Zorov, A.M. Popov, S.M. Zaytsev, T.A. Labutin, Russ. Chem. Rev. 84, 1021–1050 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    M. Baudelet, B.W. Smith, J. Anal. At. Spectrom. 28, 624–629 (2013)CrossRefGoogle Scholar
  20. 20.
    G.S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. DePascale, T.M. Miano, M. Capitelli, Environ. Res. 109, 413–420 (2009)CrossRefGoogle Scholar
  21. 21.
    B.S. Marangoni, K.S.G. Silva, G. Nicolodelli, G.S. Senesi, J.S. Cabral, P.R. Villas-Boas, C.S. Silva, P.C. Teixeira, A.R.A. Noqueira, V.M. Benites, D.M.B.P. Milori, Anal. Met. 8, 78–82 (2016)CrossRefGoogle Scholar
  22. 22.
    G. Nicolodelli, B.S. Marangoni, J.D.S. Cabral, P.R. Villas Boas, G.S. Senesi, C.H. Santos, R.A. Romano, A. Segnini, Y. Lucas, C.R. Montes, D.M.B.P. Milori, Appl. Opt. 53, 2170–2176 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    G. Nicolodelli, G.S. Senesi, R.A. Romano, I.L.O. Perazzoli, D.M.B.P. Milori, Spectrochim. Acta. Part B 11, 23–29 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    G. Nicolodelli, G.S. Senesi, I.L.O. Perazzoli, B.S. Marangoni, V.M. Benites, D.M.B.P. Milori, Sci. Total Environ. 565, 1116–1123 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    S. Farhana, P. Sivakumar, J. Weekes, N. Melikechi, S. Hossain, D. Fluman, M. Rana, J. Solid Waste Technol. Manag. 40, 243–253 (2014)CrossRefGoogle Scholar
  26. 26.
    F. Hilbk-Kortenbrucka, R. Nolla, P. Wintjensb, H. Falkb, C. Becker, Spectrochim. Acta Part B 56, 933–945 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    D. Santos Jr., L.C. Nunes, L.C. Trevizan, Q. Godoi, F.O. Leme, J.W.B. Braga, F.J. Krug, Spectrochim. Acta Part B 64, 1073–1078 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    M. Bukhari, M.A. Awan, I.A. Qazi, M.A. Baig, J. Anal. Methods Chem. 2012, 823016 (2012)CrossRefGoogle Scholar
  29. 29.
    H. Lin, Y. Mingyin, L. Jinlong, L. Muhua, H. Xiuwen, J. Appl. Spectrosc. 80(6), 957–961 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    M.A. Gondal, Z.S. Seddigi, M.M. Nasr, B. Gondal, J. Hazard. Mater. 175, 726–732 (2010)CrossRefGoogle Scholar
  31. 31.
    N. Keshava, IEEE Trans. Geosci. Remote Sens. 42, 1552–1565 (2004)ADSCrossRefGoogle Scholar
  32. 32.
  33. 33.
    L.A. Currie, Anal. Chem. 40, 586–593 (1968)CrossRefGoogle Scholar
  34. 34.
    P. Devangad, V.K. Unnikrishnan, R. Nayak, M.M. Tamboli, K.M.M. Shameem, C. Santhosh, G.A. Kumar, D.K. Sardar, Opt. Mater 52, 32–37 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    P.J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovich, M.C. Phillips, S.S. Harilal, Spectrochim. Acta B 125, 112–119 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    J. Serrano, J. Moros, J.J. Laserna, Phys. Chem. Chem. Phys. 18, 2398–2408 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Serrano, J. Moros, J.J. Laserna, J. Anal. At. Spectrom. 30, 2343–2352 (2015)CrossRefGoogle Scholar
  38. 38.
    K.C. Hartig, B.E. Brumfield, M.C. Phillips, S.S. Harilal, Spectrochim. Acta Part B 135, 54–62 (2017)ADSCrossRefGoogle Scholar
  39. 39.
  40. 40.
  41. 41. Accessed 1 Aug 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Carlos R. Menegatti
    • 1
    Email author
  • Gustavo Nicolodelli
    • 2
  • Giorgio S. Senesi
    • 3
  • Otavio A. da Silva
    • 1
  • Hélcio J. I. Filho
    • 1
  • Paulino R. Villas-Boas
    • 4
  • Bruno S. Marangoni
    • 2
  • Débora M. B. P. Milori
    • 4
  1. 1.School of Engineering of LorenaSão Paulo UniversityLorenaBrazil
  2. 2.Physics Institute, Federal University of Mato Grosso do SulCampo GrandeBrazil
  3. 3.CNR - Istituto per la Scienza e Tecnologia dei Plasmi (ISTP)BariItaly
  4. 4.Embrapa InstrumentationSão CarlosBrazil

Personalised recommendations