Advertisement

Applied Physics B

, 125:75 | Cite as

Selective Hermite–Gaussian mode excitation in a laser cavity by external pump beam shaping

  • Florian SchepersEmail author
  • Tim Bexter
  • Tim Hellwig
  • Carsten Fallnich
Article
  • 21 Downloads

Abstract

An improved gain-shaping method for selective mode excitation is presented and its application for the excitation of higher order Hermite–Gaussian modes is demonstrated in an end-pumped Nd:YVO\(_4\) laser. Using a digital micromirror device, the intensity distribution of the pump beam within the laser crystal could be shaped with a high degree of freedom. Thus, a broad variety of different gain distributions were achieved, enabling a highly selective mode excitation method based on gain shaping. In the presented experiment, the excitation of nearly 1000 different Hermite–Gaussian modes was demonstrated, increasing the number of excitable Hermite–Gaussian modes by at least a factor of five, compared to other excitation methods. The excited modes include Hermite–Gaussian modes of high orders as, for example, the HG\(_{25,27}\) mode. Furthermore, the electronic control of the gain profile, applied via the digital micromirror device, enabled automated measurements of the selective mode excitation. Here, a systematic study is presented to optimize the generated pump patterns with respect to the number of modes that could be excited.

Notes

References

  1. 1.
    A.E. Siegmann, Lasers (University Science Books, Mill Valley, 1986), p. 574. (648, 479, 954–969)Google Scholar
  2. 2.
    M.A. Bandres, J.C. Gutiérrez-Vega, Opt. Lett. 29, 144–146 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    S. Sato, M. Ishigure, H. Inaba, Electron. Lett. 27, 1831–1832 (1991)CrossRefGoogle Scholar
  4. 4.
    M. Woerdemann, C. Alpmann, C. Denz, Appl. Phys. Lett. 98, 111101 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    K.T. Gahagan, G.A. Swartzlander, Opt. Lett. 21, 827–829 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    S.H. Tao, X.-C. Yuan, J. Lin, X. Peng, H.B. Niu, Opt. Express 13, 7726–7731 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, Nano Lett. 12, 3645–3649 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    S.W. Hell, J. Wichmann, Opt. Lett. 19, 780–782 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, T. Hara, J. Opt. Soc. Am. A 25, 1642–1651 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S.A. Goorden, J. Bertolotti, A.P. Mosk, Opt. Express 22, 17999–18009 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Y.-X. Ren, Z.-X. Fang, L. Gong, K. Huang, Y. Chen, R.-D. Lu, J. Opt. 17, 125604 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    P. Fulda, K. Kokeyama, S. Chelkowski, A. Freise, Phys. Rev. D 82, 012002 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    D. Auston, IEEE J. Quantum Electron. 4, 420–422 (1968)ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Kim, J.I. Mackenzie, J.R. Hayes, W.A. Clarkson, Opt. Express 19, 14526–14531 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Chen, Y. Lan, S. Wang, Appl. Phys. B 72, 167–170 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    H. Laabs, B. Ozygus, Opt. Laser Technol. 28, 213–214 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Y.F. Chen, T.M. Huang, C.F. Kao, C.L. Wang, S.C. Wang, IEEE J. Quantum Electron. 33, 1025–1031 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    K. Shimohira, Y. Kozawa, S. Sato, Opt. Lett. 36, 4137–4139 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    W. Kong, A. Sugita, T. Taira, Opt. Lett. 37, 2661–2663 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    T. Sato, Y. Kozawa, S. Sato, Opt. Lett. 40, 3245–3248 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    S.-C. Chu, Y.-T. Chen, K.-F. Tsai, K. Otsuka, Opt. Express 20, 7128–7141 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S. Ngcobo, I. Litvin, L. Burger, A. Forbes, Nat. Commun. 4, 2289 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman, Opt. Commun. 96, 123–132 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    K.-F. Tsai, S.-C. Chu, Laser Phys. 28, 075801 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545–548 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Y.-X. Ren, R.-D. Lu, L. Gong, Ann. Phys. 527, 447–470 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D.G. Hall, R.J. Smith, R.R. Rice, Appl. Opt. 19, 3041–3043 (1980)ADSCrossRefGoogle Scholar
  28. 28.
    K. Kubodera, K. Otsuka, J. Appl. Phys. 50, 653–659 (1979)ADSCrossRefGoogle Scholar
  29. 29.
    M.E. Innocenzi, H.T. Yura, C.L. Fincher, R.A. Fields, Appl. Phys. Lett. 56, 1831–1833 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    Y.T. Chang, Y.P. Huang, K.W. Su, Y.F. Chen, Opt. Express 16, 21155–21160 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    L. Cini, J. I. Mackenzie, Appl. Phys. B 123, 273 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    H. Glur, R. Lavi, T. Graf, IEEE J. Quantum Electron. 40, 499–504 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    W. Koechner, Solid-state laser engineering, 6th edn. (Springer Science+Business Media Inc., New York, 2006), pp. 128–132zbMATHGoogle Scholar
  34. 34.
    L.M. Narducci, J.R. Tredicce, L.A. Lugiato, N.B. Abraham, D.K. Bandy, Phys. Rev. A 33, 1842–1854 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    K. Otsuka, S.-C. Chu, Opt. Lett. 34, 10–12 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied PhysicsWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.Laser Physics and Nonlinear Optics Group, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations