Advertisement

Applied Physics B

, 125:71 | Cite as

Planar measurements of CO concentrations in flames at atmospheric and elevated pressure by laser-induced fluorescence

  • Lena VoigtEmail author
  • Johannes Heinze
  • Metin Korkmaz
  • Klaus Peter Geigle
  • Chris Willert
Article
  • 72 Downloads

Abstract

The article describes the development and application of a laser-optical technique for the quantitative measurement of carbon monoxide (CO) in combustion environments of elevated pressures relevant of gas turbine environments. Planar CO measurements can provide important information for the understanding of several aspects of the combustion process, such as localized lean blowout conditions or quenching effects of effusion cooling on the combustor flow. While laser-induced fluorescence is a sensitive non-intrusive measuring technique suitable for planar detection, the CO molecule cannot be excited directly in the visible or near UV. For the present implementation, a two-photon excitation scheme with resulting fluorescence in the visible range is utilized. To qualify the technique, planar measurements in a laminar premixed atmospheric flame are performed in a first step; this flame is later on used for calibration of CO concentrations in a laminar premixed flame at elevated pressure up to 5 bar and in a generic turbulent combustor with a swirl-stabilized flame operated at atmospheric pressure. Pressure effects on spectral structures and the calibration procedure are discussed, as well as potential interference by cross-sensitivity with other species. Based on this optimization strategies are defined for the respective experimental arrangements.

Notes

Acknowledgements

We would like to thank Martin Müller for his help to set up the experiments. Dr Eggert Magens is acknowledged for stimulating discussions and valuable suggestions. We would like to thank gratefully Dr. Ulrich Meier for his comments on the manuscript. This work has been funded by the DLR Directorate of Aeronautics through the project LOCCA (Low NOx Oxide Ceramic Combustor for Aero-Engines).

References

  1. 1.
    ICAO, Environmental protection, annex 16 to the convention on international civil aviation, Vol. II: aircraft engine emissions, ISBN 978-92-9231-123-0 (2008)Google Scholar
  2. 2.
    A.C. Eckbreth, Laser diagnostics for combustion temperature and species, 2 edn. (Gordon and Breach, Amsterdam, 1996)Google Scholar
  3. 3.
    K. Kohse-Höinghaus, J.B. Jeffries (eds.), Applied combustion diagnostics (Taylor and Francis, New York, 2002)Google Scholar
  4. 4.
    P.H. Krupenie: The band spectrum of carbon monoxide (national standard reference data series—national bureau of standards—5 (NSRDS-NBS 5), U.S. Dept. of Commerce, Washington, DC, 1966)Google Scholar
  5. 5.
    K.P. Huber, G. Herzberg, Molecular spectra and molecular structure IV, constants of diatomic molecules (Van Nostrand, New York, 1979)CrossRefGoogle Scholar
  6. 6.
    B.J. Kirby, R.K. Hanson, Appl. Phys. B 69, 505–507 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    B.J. Kirby, R.K. Hanson, Proc. Combust. Inst. 28, 253–258 (2000)CrossRefGoogle Scholar
  8. 8.
    B.J. Kirby, R.K. Hanson, Appl. Opt. 41, 1190–1201 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    G.W. Loge, J.J. Tiee, F.B. Wampler, J. Chem. Phys. 79, 196–202 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Alden, S. Wallin, W. Wendt, Appl. Phys. B 33, 205–208 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    M.D. Di Rosa, R.L. Farrow, J. Opt. Soc. Am. B 16, 861–870 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    M.D. Di Rosa, R.L. Farrow, J. Quant. Spectrosc. Rad. Trans. 68, 363–375 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    T.B. Settersten, A. Dreizler, R.L. Farrow, J. Chem. Phys. 117, 3173–3179 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Di Rosa, R. Farrow, J. Opt. Soc. Am. B 16, 1988–1994 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    J. Rosell, J. Sjöholm, M. Richter, M. Aldén, Appl. Spectrosc. 67, 314–320 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    B. Li, X. Li, D. Zhang, Q. Gao, M. Yao, Z. Li, Opt. Express 25, 25809–25818 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    D.R. Richardson, S. Roy, J.R. Gord, Opt. Lett. 42, 875–878 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    K.A. Rahman, K.S. Patel, M.N. Slipchenko, T.R. Meyer, Z. Zhang, Y. Wu, J.R. Gord, S. Roy, Appl. Opt. 57, 5666–5671 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    J.M. Seitzman, J. Haumann, R.K. Hanson, Appl. Opt. 26, 2892–2899 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    R.P. Saxon, J. Eichler, Phys. Rev. A 34, 199–206 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    R. Loudon, The quantum theory of light (Clarendon, Oxford, 1983)zbMATHGoogle Scholar
  22. 22.
    D.J. Bamford, L.E. Jusinski, W.K. Bischel, Phys. Rev. A 34, 185–198 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    B. Atakan, J. Heinze, U.E. Meier, Appl. Phys. B 64, 585–591 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    A.O. Vyrodov, J. Heinze, M. Dillmann, U.E. Meier, W. Stricker, Appl. Phys. B 61, 409–414 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    A. Le Floch, Mol. Phys. 72, 133–144 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    M. Eidelsberg, J.-Y. Rocin, A. Le Floch, F. Launay, C. Letzelter, J. Rostas, J. Mol. Spectr. 121, 309–336 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    P.J.H. Tjossem, K.C. Smyth, J. Chem. Phys. 91, 2041–2048 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    E. Lindholm, Ark. Mat. Astr. Fys. 32A, 1–18 (1945)Google Scholar
  29. 29.
    O. Carrivain, M. Orain, N. Dorval, C. Morin, G. Legros, Appl. Spectrosc. 71, 2353–2366 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    C. Morley: GASEQ-A Chemical equilibrium program for windows (2018). http://www.c.morley.dsl.pipex.com/
  31. 31.
    P. Weigand, R. Lückerath, W. Meier, Documentation of flat premixed laminar CH4/Air standard flames: Temperatures and species concentrations (2018). http://www.dlr.de/vt/desktopdefault.aspx/tabid-3065/4632_read-6696/
  32. 32.
    S. Linow, A. Dreizler, J. Janicka, E.P. Hassel, Appl. Phys. B 71, 689–696 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    K.P. Geigle, Y. Schneider-Kühnle, M.S. Tsurikov, R. Hadef, R. Lückerath, V. Krüger, W. Stricker, M. Aigner, Proc. Combust. Inst. 30, 1645–1653 (2005)CrossRefGoogle Scholar
  34. 34.
    J. Heinze, U. Meier, T. Behrendt, C. Willert, K.P. Geigle, O. Lammel, R. Lückerath, Z. Phys. Chem. 225, 1315–1341 (2011)CrossRefGoogle Scholar
  35. 35.
    K.P. Geigle, M. Köhler, W. O’Loughlin, W. Meier, Proc. Combust. Inst. 35, 3373–3380 (2015)CrossRefGoogle Scholar
  36. 36.
    M.D. Cooper, R.W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer 15, 139–150 (1975)ADSCrossRefGoogle Scholar
  37. 37.
    U. Koch, J. Riehmer, B. Esser, A. Gülhan, In: Proc. 6th European Symp. on aerothermodynamics for space vehicles, Versailles, France, 3–6 November 2008 (ESA SP-659, January 2009)Google Scholar
  38. 38.
    F. Di Teodoro, R.L. Farrow, J. Chem. Phys. 114, 3421–3428 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    J. Quant, A.Y. Chang, M.D. Di Rosa, R.K. Hanson, Spectrosc. Radiat. Transfer 47, 375–390 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    O. Carrivain: Thèse de doctorat, Université Pierre et Marie Curie, 2015Google Scholar
  41. 41.
    A.O. Vyrodov, J. Heinze, U.E. Meier, J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, Combust. Sci. Technol. 175, 721–741 (2003)CrossRefGoogle Scholar
  43. 43.
    P. Weigand, W. Meier, X.R. Duan, W. Stricker, M. Aigner, Combust. Flame 144, 205–224 (2006)CrossRefGoogle Scholar
  44. 44.
    J. Warnatz, U. Maas, R.W. Dibble, Combustion (Springer, Berlin Heidelberg New York, 2006)zbMATHGoogle Scholar
  45. 45.
    W. Meier, X.R. Duan, P. Weigand, Combust. Flame 144, 225–236 (2006)CrossRefGoogle Scholar
  46. 46.
    L. Voigt, J. Heinze, T. Aumeier, T. Behrendt, F. Di Mare: Proc. ASME turbo expo 2016: turbomachinery technical conference and exposition, paper number GT2016-63413, June 26–30, 2017, Charlotte, NC, USAGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Propulsion TechnologyGerman Aerospace Center (DLR)CologneGermany
  2. 2.Institute for Combustion TechnologyRWTH Aachen UniversityAachenGermany
  3. 3.Institute of Combustion TechnologyGerman Aerospace Center (DLR)StuttgartGermany

Personalised recommendations