Applied Physics B

, 125:66 | Cite as

Improving the spectral performance of extended cavity diode lasers using angled-facet laser diode chips

  • Mandy Krüger
  • Vasile Z. Tronciu
  • Ahmad Bawamia
  • Christian Kürbis
  • Mindaugas Radziunas
  • Hans WenzelEmail author
  • Andreas Wicht
  • Achim Peters
  • Günther Tränkle


We present and compare theoretical and experimental results on the electro-optical performance of extended cavity diode lasers (ECDLs) that employ two ridge waveguide designs for the single-transverse mode GaAs laser diode chip. One facet of the laser diode chips serves as a partially reflective output coupler for the laser cavity. The other facet constitutes an intra-cavity interface which introduces spurious optical feedback to the laser diode chip. The waveguide designs differ with respect to the suppression of this spurious feedback. The first design employs a straight ridge waveguide intersecting both facets at normal incidence. The intra-cavity facet is anti-reflection coated and features a residual intensity reflectivity of the order \(10^{-4}\). The second design employs a bent ridge waveguide intersecting the anti-reflection-coated intra-cavity facet at an appropriate angle. This provides an additional suppression of the spurious intensity reflection to a value estimated to be less than \(10^{-6}\). We compare the electro-optical performance of both designs theoretically and experimentally. The utilization of a bent waveguide results in an improved spectral stability and purity, specifically a higher side mode suppression and a small intrinsic spectral linewidth over the whole investigated current range, of the external cavity diode laser without sacrificing other parameters such as the output power. The external cavity diode lasers under study exhibit no degradation of the measured frequency noise power spectra and intrinsic linewidths even if there is a drop of the side mode suppression ratio provided that it is not reduced to a very small value. Thus, the usage of a more readily accessible straight waveguide chip in an ECDL could be sufficient if only a limited tuning range and a particularly compact assembly are needed. For spectroscopic applications requiring a small intrinsic spectral linewidth over a large frequency range a bent waveguide chip could be the better choice.



This work was funded in parts by the competitive procedure (SAW) of the Leibniz Association under grant number SAW-2013-FBH-3. It was further supported by the Germany Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) according to a decision of the German Federal Parliament (Grant Number 50 WM 1545).


  1. 1.
    T. Lévèque, Rev. Sci. Instrum. 86, 033104 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    K. Bongs, C. R. Phys. 16, 553–564 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Schmidt, A. Senger, M. Hauth, C. Freier, V. Schkolnik, A. Peters, Gyrosc. Navig. 2, 170–177 (2011)CrossRefGoogle Scholar
  4. 4.
    T. Schuldt, Exp. Astron. 39, 167–206 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, G. Erbert, G. Tränkle, Appl. Phys. B 104, 813–818 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    T.-P. Nguyen, M. Schiemangk, S. Spießberger, H. Wenzel, A. Wicht, A. Peters, G. Erbert, G. Tränkle, Appl. Phys. B 108, 767–771 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, G. Erbert, Semicond. Sci. Technol. 29, 1–6 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1–20 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    E.C. Cook, P.J. Martin, T.L. Brown-Heft, J.C. Garman, D.A. Steck, Rev. Sci. Instrum. 83, 043101 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A.N. Dinkelaker, M. Schiemangk, V. Schkolnik, A. Kenyon, K. Lampmann, A. Wenzlawski, P. Windpassinger, O. Hellmig, T. Wendrich, E.M. Rasel, M. Giunta, C. Deutsch, R. Kürbis, A. Smol, M. Wicht, A.Peters Krutzik, Appl. Opt. 56, 1388–1396 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    V. Tronciu, M. Radziunas, C. Kürbis, H. Wenzel, A. Wicht, Opt. Quant. Electron. 47, 1459–1464 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Radziunas, V.Z. Tronciu, E. Luvsandamdin, C. Kürbis, A. Wicht, H. Wenzel, IEEE J. Quantum Electron. 51, 2000408 (2015)CrossRefGoogle Scholar
  13. 13.
    M.W. Fleming, A. Mooradian, IEEE J. Quantum Electron. QE–17, 44–59 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    S.D. Saliba, R.E. Scholten, Appl. Opt. 48, 6961–6966 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    C.E. Zah, J.S. Osinski, C. Caneau, S.G. Menocal, L.A. Reith, J. Salzman, F.K. Shokoohi, T.P. Lee, Electron. Lett. 23, 990–991 (1987)CrossRefGoogle Scholar
  16. 16.
    W. Rideout, R. Holmstrom, J. Lacourse, E. Meland, W. Powazinik, Electron. Lett. 26, 36–37 (1990)CrossRefGoogle Scholar
  17. 17.
    A.J. Collar, G.D. Henshall, J. Farré, B. Mikkelsen, Z. Wang, L. Eskildsen, D.S. Olesen, K.E. Stubkjaer, I.E.E.E. Photon, Technol. Lett. 2, 553–555 (1990)CrossRefGoogle Scholar
  18. 18.
    P.J.S. Heim, Z.F. Fan, S.H. Cho, K. Nam, M. Dagenais, F.G. Johnson, R. Leavitt, Electron. Lett. 33, 1387–1389 (1997)CrossRefGoogle Scholar
  19. 19.
    J. Sacher, W. Elsäßer, E.O. Göbel, IEEE J. Quantum Electron. 27, 373–379 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    J. Mork, B. Tromborg, J. Mark, IEEE J. Quantum Electron. 28, 93–108 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    P.W. McIlroy, IEEE J. Quantum Electron. 26, 991–997 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    P.L. Liu, B.J. Li, P.J. Cressman, J.R. Debesis, S. Stoller, I.E.E.E. Photon, Tech. Lett. 3, 755–756 (1991)CrossRefGoogle Scholar
  23. 23.
    A. Wicht, A. Bawamia, M. Krüger, C. Kürbis, M. Schiemangk, R. Smol, A. Peters, G. Tränkle, Proc. SPIE 10085, 100850F (2017)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    H. Wenzel, F. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K.H. Hasler, G. Erbert, I.E.E.E. Photon, Tech. Lett. 20, 214–216 (2008)CrossRefGoogle Scholar
  26. 26.
    H. Wenzel, G. Erbert, P.M. Enders, IEEE J. Sel. Top. Quantum Electron. 5, 637–642 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    U. Bandelow, M. Radziunas, J. Sieber, M. Wolfrum, IEEE J. Quantum Electron. 37, 183–188 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    M. Spreemann, M. Lichtner, M. Radziunas, U. Bandelow, H. Wenzel, IEEE J. Quantum Electron. 45, 609–616 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M. Radziunas, Handbook of Optoelectronic Device Modeling and Simulation, 31st edn. (CRC Press, Boca Raton, 2017)Google Scholar
  30. 30.
    M. Radziunas, H.-J. Wünsche, Optoelectronic Devices (Springer, New York, 2005), pp. 121–150CrossRefGoogle Scholar
  31. 31.
    M. Radziunas, Opt. Quant. Electron. 48, 470 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Wenzel, A. Zeghuzi, Handbook of Optoelectronic Device Modeling and Simulation, vol. II, 27th edn. (CRC Press, Boca Raton, 2018)Google Scholar
  33. 33.
    M. Schiemangk, S. Spießberger, A. Wicht, G. Erbert, G. Tränkle, A. Peters, Appl. Opt. 53, 7138–7143 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    G. Di Domenico, S. Schilt, P. Thomann, Appl. Opt. 49, 4801–4807 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, A. Peters, G. Erbert, G. Tränkle, Opt. Express 19, 7077–7083 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ferdinand-Braun-InstitutLeibniz-Institut für HöchstfrequenztechnikBerlinGermany
  2. 2.Department of PhysicsTechnical University of MoldovaChisinauMoldova
  3. 3.Weierstrass InstituteBerlinGermany
  4. 4.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations