Advertisement

Applied Physics B

, 125:68 | Cite as

Dark mode tailored electromagnetically induced transparency in terahertz metamaterials

  • Kailong Jin
  • Xiaona YanEmail author
  • Xiaoyan Wang
  • Wenjie Zhang
  • Zuanming Jin
  • Ye Dai
  • Guohong MaEmail author
  • Jianquan Yao
Article
  • 72 Downloads

Abstract

In this paper, a novel terahertz metamaterial structure composed of a pair of sub-wavelength reverse U-shaped split ring resonators (RUSRs) and cut wire (CW) resonator is designed to realize electromagnetically induced transparency (EIT) effect in weak coupling region. Theoretical and simulated results show that by modulating the relative coupling distance between CW and SRR or mutual distance between SRR pair, the EIT-like phenomenon can be tailored. Furthermore, by introducing photosensitive silicon (Si) cell into the units of the dark mode resonator, actively optical control of the EIT-like effect is realized through increasing the dark mode damping rate. The present work provides an alternative method to design ultrasensitive sensors, filters and slow-light devices in the THz regime.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 11674213, 61735010, 11574195, 11774220).

References

  1. 1.
    M. Tonouchi, Cutting-edge terahertz technology. Nat. Photon. 1(2), 97–105 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    H. Song, T. Nagatsuma, Present and future of terahertz communications. Terahertz Sci. Technol. IEEE Trans. 1(1), 256–263 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    W.L. Chan, K. Charan, D. Takhar, K.F. Kelly, R.G. Baraniuk, D.M. Mittleman, A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93(12), 121105 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    B. Ferguson, X.C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1(1), 26–33 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    K.J. Boller, A. Imamoğlu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66(20), 2593 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    S. Zhang, D.A. Genov, Y. Wang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101(4), 047401 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    D.R. Smith, J.B. Pendry, Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    J. Valentine, S. Zhang, T. Zentgraf, E. Ulinavila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211), 376 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    S. Zhang, Y.S. Park, J. Li, Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102(2), 023901 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D.R. Smith, N. Kroll, Negative refractive index in left-handed materials. Phys. Rev. Lett. 85(14), 2933 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    T. Ergin, N. Stenger, P. Brenner, Three-dimensional invisibility cloak at optical wavelengths. Science 328(5976), 337–339 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    X. Ni, Z.J. Wong, M. Mrejen, An ultrathin invisibility skin cloak for visible light. Science 349(6254), 1310–1314 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, W. Zhang, Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial. IEEE J. Sel. Top. Quantum Electron. 19(1), 8400707 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    X. Liu, J. Gu, R. Singh, W. Zhang, Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl. Phys. Lett. 100(13), 131101 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    N. Papasimakis, V.A. Fedotov, N.I. Zheludev, Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101(25), 253903 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    X. Piao, S. Yu, N. Park, Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt. Express 20(17), 18994–18999 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    N. Liu, L. Langguth, T. Weiss, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8(9), 758 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    N. Liu, T. Weiss, M. Mesch, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10(4), 1103–1107 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M. Liu, Z. Tian, X. Zhang, Tailoring the plasmon-induced transparency resonances in terahertz metamaterials. Opt. Express 25(17), 19844–19855 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    K.M. Devi, A.K. Sarma, D.R. Chowdhury, Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial. Opt. Express 25(9), 10484–10493 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.T. Chen, A.J. Taylor, J. Han, W. Zhang, Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, 1151 (2012)CrossRefGoogle Scholar
  23. 23.
    P. Pitchappa, M. Manjappa, C.P. Ho, Metamaterials: Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv. Opt. Mater. 4(4), 540 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Yahiaoui, M. Manjappa, Y.K. Srivastava, Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices. Appl. Phys. Lett. 111(2), 021101 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    C. Zhang, J. Wu, B. Jin, B. Jin, X. Jia, L. Kang et al., Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial. Appl. Phys. Lett. 110(24), 241105 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    J. Wu, B. Jin, J. Wan, Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Appl. Phys. Lett. 99(16), 36 (2011)Google Scholar
  27. 27.
    X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, T. Zhen, J. Han, F. Yan, W. Zhang, Broadband terahertz transparency in a switchable metasurface. IEEE Photon J. 7(1), 1–8 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Zhao, C. Yuan, L. Zhu, J. Yao, Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nanoscale 8(33), 15273–15280 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Cheng, S. Chen, P. Yu, Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl. Phys. Lett. 103(20), 36 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, C. Xu, Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 126, 271–278 (2018)CrossRefGoogle Scholar
  31. 31.
    T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, S. Xiao, Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial. Opt. Commun. 426, 629–634 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, S. Xiao, Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial. J. Phys. D Appl. Phys. 51(41), 415105 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, C. Xu, Strong interaction between graphene layer and Fano resonance in terahertz metamaterials. J. Phys. D Appl. Phys. 50(19), 195101 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    T. Liu, Z. Yi, S. Xiao, Active control of near-field coupling in a Terahertz metal-graphene metamaterial. IEEE. Photon. Tech. Lett. 29(22), 1998–2001 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    M. Manjappa, S.Y. Chiam, L. Cong, A. Bettiol, W. Zhang, R. Singh, Tailoring the slow light behavior in terahertz metasurfaces. Appl. Phys. Lett. 106(18), 181101 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, R.S. Hegde, H. Giessen, Highly sensitive refractive index sensors with plasmonic nanoantennas-utilization of optimal spectral detuning of Fano resonances. ACS Sens. 3(5), 960–966 (2018)CrossRefGoogle Scholar
  37. 37.
    T. Tan, Y.K. Srivastava, M. Manjappa, E. Plum, R. Singh, Lattice induced strong coupling and line narrowing of split resonances in metamaterials. Appl. Phys. Lett. 112(20), 201111 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, W. Zhang, Plasmonic analog of electromagnetically induced transparency in stereo metamaterials. IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017)Google Scholar
  39. 39.
    M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kailong Jin
    • 1
  • Xiaona Yan
    • 1
    Email author
  • Xiaoyan Wang
    • 1
  • Wenjie Zhang
    • 1
  • Zuanming Jin
    • 1
  • Ye Dai
    • 1
  • Guohong Ma
    • 1
    Email author
  • Jianquan Yao
    • 2
  1. 1.Department of PhysicsShanghai UniversityShanghaiChina
  2. 2.Institute of Laser and Opto-electronics, College of Precision Instrument and Opto-electronics EngineeringTianjin UniversityTianjinChina

Personalised recommendations