Advertisement

Applied Physics B

, 125:56 | Cite as

Laser-induced breakdown spectroscopy (LIBS) for classification of wood species integrated with artificial neural network (ANN)

  • Xutai Cui
  • Qianqian WangEmail author
  • Yu Zhao
  • Xiaolei Qiao
  • Geer Teng
Article
  • 131 Downloads

Abstract

In this paper, laser-induced breakdown spectroscopy (LIBS) combined with artificial neural network (ANN) was investigated to classify four species of wood samples (Africa rosewood, Brazil bubinga, Myanmar padauk, and Pterocarpus erinaceus). The wood samples were ablated by laser pulses to generate plasma emission, which was measured by a spectrometer and transmitted into a computer for further data analysis. The feature spectral data were selected out based on loadings of principal component analysis (PCA) and normalized using the sum of all feature spectra data. The ANN model was built based on the feature spectral data to classify the wood species. The relationship between correct classification rate (CCR) and settings of ANN was discussed. The CCR of ANN model for test set data achieved 100% with multilayer perceptron network and Broyden–Fletcher–Goldfarb–Shanno iterative algorithm. This result was also compared with the CCRs of PLS-DA, KNN, and SIMCA model for test set (82.5%, 95.83%, and 51.67%, respectively). Using the ratio between feature variables to recognize the species of wood was also discussed. The experimental results demonstrated that LIBS integrated with ANN could be applied for analyzing and recognizing wood species.

Notes

Acknowledgements

The research was supported on the National Natural Science Foundation of China (NSFC) under Grant 61775017.

References

  1. 1.
    J. Kopac, S. Sali. J. Mater. Process. Technol. 133, 134–142 (2003)CrossRefGoogle Scholar
  2. 2.
    Y.B. Ma, J. Stubb, I. Kontro, K. Nieminen, M. Hummel, H. Sixta, Carbohydr. Polym. 179, 145–151 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Stahl, J. Berghel. Biomass Bioenergy 35, 4849–4854 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Francisco-Fernandez, J. Tarrio-Saavedra, A. Mallik, S. Naya, Chemometr. Intell. Lab. Syst. 118, 159–172 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Ruelle, J. Beauchêne, H. Yamamoto, B. Thibaut, Wood Sci. Technol. 45, 339–357 (2010)CrossRefGoogle Scholar
  6. 6.
    J. De la Fuente-León, E. Lafuente-Jimenez, D. Hermosilla, M. Broto-Cartagena, A. Gascó, For. Syst. 23, 64–71 (2014)Google Scholar
  7. 7.
    J.Y. Tou, Y.H. Tay, P.Y. Lau, Rotational invariant wood species recognition through wood species verification, in First asian conference on intelligent information and database systems. IEEE, Dong Hoi, Vietnam (2009).  https://doi.org/10.1109/ACIIDS.2009.10
  8. 8.
    M.J. Liebmann, J. Farella, C.I. Roos, A. Stack, S. Martini, T.W. Swetnam, Proc. Natl. Acad. Sci. USA 113, E696–E704 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    F. Austerlitz, S. Mariette, N. Machon, P.H. Gouyon, B. Godelle, Genetics 154, 1309–1321 (2000)Google Scholar
  10. 10.
    H. Han, S. Li, X. Gan, X. Zhang, Bot. Sci. 95, 283–294 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Khalid, E. Lew, L. Yi, R. Yusof, M. Nadaraj, Int. J. Simul. Syst. Sci. Technol. 9, 9–18 (2008)Google Scholar
  12. 12.
    V. Piuri, F. Scott, IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40, 358–366 (2010)CrossRefGoogle Scholar
  13. 13.
    K. Gasim, A. Boro, S. Harjoko, Hartati, Int. J. Adv. Comput. Sci. Appl. 4, 48–53 (2013)Google Scholar
  14. 14.
    J.C. Hermanson, A.C. Wiedenhoeft. IAWA J. 32, 233–250 (2011)CrossRefGoogle Scholar
  15. 15.
    O. Hagman, Holz Als Roh-und Werkst 55, 377–382 (1997)CrossRefGoogle Scholar
  16. 16.
    M.J. Asif, C.H. Cannon, Plant Mol. Biol. Rep. 23, 185–192 (2005)CrossRefGoogle Scholar
  17. 17.
    L.H. Tnah, S.L. Lee, K.K.S. Ng, S. Bhassu, R.Y. Othman, Wood Sci. Technol. 46, 813–825 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Sandak, J. Sandak, M. Negri, Wood Sci. Technol. 45, 35–48 (2010)CrossRefGoogle Scholar
  19. 19.
    P.A. Cooper, D. Jeremic, S. Radivojevic, Y.T. Ung, B. Leblon, Can. J. For. Res.-Rev. Can. Rech. For. 41, 2150–2157 (2011)CrossRefGoogle Scholar
  20. 20.
    K. Watanabe, S.D. Mansfield, S. Avramidis, Eur. J. Wood Wood Products 70, 61–67 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Tsuchikawa, M. Schwanninger, Appl. Spectrosc. Rev. 48, 560–587 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66, 347–419 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J. Singh, R. Kumar, S. Awasthi, V. Singh, A.K. Rai, Food Chem. 221, 1778–1783 (2017)CrossRefGoogle Scholar
  24. 24.
    C.M. Ahamer, S. Eschlbock-Fuchs, P.J. Kolmhofer, R. Rossler, N. Huber, J.D. Pedarnig, Spectroc. Acta Pt. B At. Spectr. 122, 157–164 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    I. Gaona, J. Serrano, J. Moros, J.J. Laserna, Spectroc. Acta Pt. B At. Spectr. 96, 12–20 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    C. Lefebvre, A. Catala-Espi, P. Sobron, A. Koujelev, R. Leveille, Planet Space Sci. 126, 24–33 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Z.J. Chen, H.K. Li, M. Liu, R.H. Li, Spectroc. Acta Pt. B-Atom. Spectr. 63, 64–68 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    J. Kang, R. Li, Y. Wang, Y. Chen, Y. Yang, J. Anal. At. Spectrom. 32, 2292–2299 (2017)CrossRefGoogle Scholar
  29. 29.
    B.A. Gething, J.J. Janowiak, R.H. Falk, For. Prod. J. 59, 67–74 (2009)Google Scholar
  30. 30.
    D. L’Hermite, E. Vors, T. Vercouter, G. Moutiers. Environ. Sci. Pollut. Res. 23, 8219–8226 (2016)CrossRefGoogle Scholar
  31. 31.
    M.Z. Martin, N. Labbe, T.G. Rials, S.D. Wullschleger, Spectroc. Acta Pt. B At. Spectr. 60, 1179–1185 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Q.Q. Wang, L.A. He, Y. Zhao, Z. Peng, L. Liu, Laser Phys. 26, 065605 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    J.L. Gottfried, F.C.D.L. Jr, C.A. Munson et al., Anal. Bioanal. Chem. 395(2), 283–300 (2009)CrossRefGoogle Scholar
  34. 34.
    L. He, Q.Q. Wang, Y. Zhao, L. Liu, Z. Peng, Plasma Sci. Technol. 18, 647–653 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    J.L. Gottfried, F.C.D.L. Jr, A.W. Miziolek, J. Anal. At. Spectrom. 24(24), 288–296 (2009)CrossRefGoogle Scholar
  36. 36.
    N. Charidingari, I. Barman, A.K. Myakalwar et al., Anal. Chem. 84(6), 2686–2694 (2012)CrossRefGoogle Scholar
  37. 37.
    J.L. Gottfried, F.C.D.L. Jr, C.A. Munson, A.W. Miziolek, J. Anal. At. Spectrom. 23, 205–216 (2008)CrossRefGoogle Scholar
  38. 38.
    J. Serrano, J. Moros, C. Sánchez et al., Anal. Chim. Acta 806, 107–116 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Garcia, A. Fernandez, J. Luengo, F. Herrera, Soft Comput. 13, 959–977 (2009)CrossRefGoogle Scholar
  40. 40.
    N.L. Shchegoleva, G.A. Kukharev, Pattern recognition and image analysis. Adv. Math. Theory Appl. 20, 513–527 (2010)Google Scholar
  41. 41.
    E. Vors, K. Tchepidjian, J.-B. Sirven, Spectrochim. Acta Part B At. Spectrosc. 117, 16–22 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    M. Zeaiter, J.M. Roger, V. Bellon-Maurel, Chemometr. Intell. Lab. Syst. 80, 227–235 (2006)CrossRefGoogle Scholar
  43. 43.
    M. Zeaiter, J.M. Roger, V. Bellon-Maurel, TrAC Trends Anal. Chem. 24, 437–445 (2005)CrossRefGoogle Scholar
  44. 44.
    M. Zeaiter, J.M. Roger, V. Bellon-Maurel, D.N. Rutledge, TrAC Trends Anal. Chem. 23, 157–170 (2004)CrossRefGoogle Scholar
  45. 45.
    J.P. Castro, E.R. Pereirafilho. J. Anal. At. Spectrom. 31, 2005–2014 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Optics and PhotonicsBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations