Applied Physics B

, 125:55 | Cite as

Trapping two types of Rayleigh particles using a focused partially coherent anomalous vortex beam

  • Miao Dong
  • Dagang Jiang
  • Nanhang Luo
  • Yuanjie YangEmail author


The radiation forces of focused partially coherent anomalous vortex (AV) beams on Rayleigh particles of different refractive indices are studied theoretically and numerically. The influences of the topological charge, the beam order and coherence length on the radiation force are also discussed. It is shown that the focused partially coherent AV beam can be used to trap high index of refraction particles at the focus and to trap low index of refraction particles in the vicinity of the focus. It is also found that the radiation force can be modulated by the topological charge, the beam order and the coherence length.



We acknowledge the support by the National Natural Science Foundation of China under Grant nos. 11874102, 11474048 and 61501097.


  1. 1.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    L. Oroszi, P. Galajda, H. Kirei, S. Bottka, P. Ormos, Direct measurement of torque in an optical trap and its application to double-strand DNA. Phys. Rev. Lett. 97, 058301 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Harada, T. Asakura, Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124, 529 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    Q.W. Zhan, Trapping metallic Rayleigh particles with radial polarization. Opt. Express 12, 3377 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    N. Calander, M. Willander, Optical trapping of single fluorescent molecules at the detection spot of nanoprobes. Phys. Rev. Lett. 89, 143603 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    F. Mao, Q. Xing, K. Wang, L. Lang, Z. Wang, L. Chai, Q. Wang, Optical trapping of red blood cells and two-photon excitation-based photodynamic study using a femtosecond laser. Opt. Commun. 256, 358 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D.H. Li, J.X. Pu, X.Q. Wang, Radiation forces of a dielectric medium plate induced by a Gaussian beam. Opt. Commun. 285, 1680 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M. Bhattacharya, P. Meystre, Using a Laguerre–Gaussian beam to trap and cool the rotational motion of a mirror. Phys. Rev. Lett. 99, 153603 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Y.F. Jiang, K.K. Huang, X.H. Lu, Radiation force of highly focused Lorentz–Gauss beams on a Rayleigh particle. Opt. Express 19, 9708 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S.H. Yan, B.L. Yao, Radiation forces of a highly focused radially polarized beam on spherical particles. Phys. Rev. A 76, 053836 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Z.R. Liu, D.M. Zhao, Radiation forces acting on a Rayleigh dielectric sphere produced by highly focused elegant Hermite-cosine-Gaussian beams. Opt. Express 20, 2895 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Z.R. Liu, D.M. Zhao, Optical trapping Rayleigh dielectric spheres with focused anomalous hollow beams. Appl. Opt. 52, 1310 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    V. Garces-Chavez, D. Roskey, M.D. Summers, H. Melville, D. McGloin, E.M. Wright, K. Dholaka, Optical levitation in a Bessel light beam. Appl. Phys. Lett. 85, 4001 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Zhang, Y.J. Yang, Radiation forces on Rayleigh particles using a focused anomalous vortex beam under paraxial approximation. Opt. Commun. 336, 202 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  16. 16.
    L.G. Wang, C.L. Zhao, L.Q. Wang, X.H. Lu, S.Y. Zhu, Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere. Opt. Lett. 32, 1393 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    J.M. Auñón, M. Nieto-Vesperinas, Optical forces on small particles from partially coherent light. J. Opt. Soc. Am. A 29, 1389 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    C.L. Zhao, Y.J. Cai, Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam. Opt. Lett. 36, 2251 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    M.L. Luo, D.M. Zhao, Simultaneous trapping of two types of particles by using a focused partially coherent cosine-Gaussian-correlated Schell-model beam. Laser Phys. 24, 086001 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    J.H. Shu, Z.Y. Chen, J.X. Pu, Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams. J. Opt. Soc. Am. A 30, 916 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    H.H. Zhang, J.H. Li, K. Cheng, M.L. Duan, Z.F. Feng, Trapping two types of particles using a focused partially coherent circular edge dislocation beam. Opt. Laser Technol. 97, 191 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    C.L. Zhao, Y.J. Cai, X.H. Lu, T. Halil, Eyyuboğlu, Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle. Opt. Express 17, 1753 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    H.F. Xu, W.J. Zhang, J. Qu, W. Huang, Optical trapping Rayleigh dielectric particles with focused partially coherent dark hollow beams. J. Mod. Opt. 62, 1839 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Y.J. Yang, Y. Dong, C.L. Zhao, Y.J. Cai, Generation and propagation of an anomalous vortex beam. Opt. Lett. 38, 5418 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Y.P. Yuan, Y.J. Yang, Propagation of anomalous vortex beams through an annular apertured paraxial ABCD optical system. Opt. Quant. Electron 47, 2289 (2015)CrossRefGoogle Scholar
  26. 26.
    Y.G. Xu, S.J. Wang, Characteristic study of anomalous vortex beam through a paraxial optical system. Opt. Commun. 331, 32 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Erdelyi, Tables of Integral Transforms, vol. 2 (Mc Graw-Hill Book Company, New York, 1954)zbMATHGoogle Scholar
  28. 28.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With formulas, Graphs, and Mathematical Tables (National Bureau of Standards Applied Mathematics, Washington, 1964)zbMATHGoogle Scholar
  29. 29.
    K. Okamoto, S. Kawata, Radiation force exerted on subwavelength particles near a nanoaperture. Phys. Rev. Lett. 83, 4534 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Miao Dong
    • 1
  • Dagang Jiang
    • 1
  • Nanhang Luo
    • 1
  • Yuanjie Yang
    • 1
    Email author
  1. 1.School of PhysicsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations