Applied Physics B

, 125:31 | Cite as

Possibility of estimating high-intensity-laser plasma parameters by modelling spectral line profiles in spatially and time-integrated X-ray emission

  • A. S. Martynenko
  • I. Yu. Skobelev
  • S. A. PikuzEmail author


We address an issue of measuring the parameters of an envolving laser-produced plasma commonly observable in high-energy density physics experiments. Available diagnostic equipment does not provide enough temporal, and often spatial, resolution to distinguish the signal coming from the region and timeframe of outmost interest, where deposited energy density reaches its maximum. In this paper, we propose and describe an approach that makes it possible to estimate the plasma parameters existing at the time of the main laser pulse arrival, as well as on later stages of plasma expansion. It is based on the analysis of X-ray spectral line profiles in multicharged ion spectra registered in simple time and spatially integrated mode. As an example, specific calculations were made for Lyβ line of Al XIII and Heβ line of Al XII and can be used to diagnose aluminum plasmas with an electron temperature of 400–1000 eV, assuming that expanding plasma was homogeneous at every moment.



The work was done under financial support of Russian Science Foundation (Grant #17-72-20272). The work of A.S. Martynenko was also supported in part by Competitiveness program of NRNU MEPhI.


  1. 1.
    C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.P.L. Robinson, A.R. Bell, Phys. Rev. Lett. 108, 165006 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    T. Nakamura, J.K. Koga, T.Z. Esirkepov, M. Kando, G. Korn, S.V. Bulanov, Phys. Rev. Lett. 108, 195001 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    A. Zhidkov, J. Koga, A. Sasaki, M. Uesaka, Phys. Rev. Lett. 88, 1850021 (2002)CrossRefGoogle Scholar
  4. 4.
    K.U. Akli, S.B. Hansen, A.J. Kemp, R.R. Freeman, F.N. Beg, D.C. Clark, S.D. Chen, D. Hey, S.P. Hatchett, K. Highbarger, E. Giraldez, J.S. Green, G. Gregori, K.L. Lancaster, T. Ma, A.J. MacKinnon, P. Norreys, N. Patel, J. Pasley, C. Shearer, R.B. Stephens, C. Stoeckl, M. Storm, W. Theobald, L.D. Van Woerkom, R. Weber, M.H. Key, Phys. Rev. Lett. 100, 165002 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    V.E. Fortov, High-Power Lasers in High-Energy-Density Physics (Springer Series in Materials Science, Cham, 2016)CrossRefGoogle Scholar
  6. 6.
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, E. Lefebvre, Rev. Mod. Phys. 85, 1 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Pikuz, A.Y. Faenov, I.Y. Skobelev, V.E. Fortov, Uspekhi Fiz. Nauk 184, 702 (2014)CrossRefGoogle Scholar
  8. 8.
    I.A. Andriyash, R. Lehe, A. Lifschitz, C. Thaury, J.M. Rax, K. Krushelnick, V. Malka, Nat. Commun. 5, 1 (2014)CrossRefGoogle Scholar
  9. 9.
    E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    H.W. Powell, M. King, R.J. Gray, D.A. MacLellan, B. Gonzalez-Izquierdo, L.C. Stockhausen, G. Hicks, N.P. Dover, D.R. Rusby, D.C. Carroll, H. Padda, R. Torres, S. Kar, R.J. Clarke, I.O. Musgrave, Z. Najmudin, M. Borghesi, D. Neely, P. McKenna, New J. Phys. 17, 103033 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    R. Betti, O.A. Hurricane, Nat. Phys. 12, 435 (2016)CrossRefGoogle Scholar
  13. 13.
    J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, S.W. Haan, R.L. Kauffman, O.L. Landen, L.J. Suter, Phys. Plasmas 11, 339 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    C.J. Cerjan, L. Bernstein, L.B. Hopkins, R.M. Bionta, D.L. Bleuel, J.A. Caggiano, W.S. Cassata, C.R. Brune, J. Frenje, M. Gatu-Johnson, N. Gharibyan, G. Grim, C. Hagmann, A. Hamza, R. Hatarik, E.P. Hartouni, E.A. Henry, H. Herrmann, N. Izumi, D.H. Kalantar, H.K. Y., Y. Kim, A. Kritcher, Y.A. Litvinov, F. Merrill, K. Moody, P. Neumayer, A. Ratkiewicz, G.H. Rinderknecht, D. Sayre, D. Shaughnessy, B. Spears, W. Stoeffl, R. Tommasini, C. Yeamans, C. Velsko, M. Wiescher, M. Couder, A. Zylstra, D. Schneider, J. Phys. G Nucl. Part. Phys. Accept. 45(1), 033003 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    J. Colgan, J. Abdallah, A.Y. Faenov, S.A. Pikuz, E. Wagenaars, N. Booth, O. Culfa, R.J. Dance, R.G. Evans, R.J. Gray, T. Kaempfer, K.L. Lancaster, P. McKenna, A.L. Rossall, I.Y. Skobelev, K.S. Schulze, I. Uschmann, A.G. Zhidkov, N.C. Woolsey, Phys. Rev. Lett. 110, 125001 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    B. Gonzalez-Izquierdo, R. Capdessus, M. King, R. Gray, R. Wilson, R. Dance, J. McCreadie, N. Butler, S. Hawkes, J. Green, N. Booth, M. Borghesi, D. Neely, P. McKenna, Appl. Sci. 8, 336 (2018)CrossRefGoogle Scholar
  17. 17.
    C. Scullion, D. Doria, L. Romagnani, A. Sgattoni, K. Naughton, D.R. Symes, P. McKenna, A. MacChi, M. Zepf, S. Kar, M. Borghesi, Phys. Rev. Lett. 119, 054801 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A. Schönlein, G. Boutoux, S. Pikuz, L. Antonelli, D. Batani, A. Debayle, A. Franz, L. Giuffrida, J.J. Honrubia, J. Jacoby, D. Khaghani, P. Neumayer, O.N. Rosmej, T. Sakaki, J.J. Santos, A. Sauteray, EPL 114, 45002 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    E. Oks, E. Dalimier, A.Y. Faenov, P. Angelo, S.A. Pikuz, T.A. Pikuz, I.Y. Skobelev, S.N. Ryazanzev, P. Durey, L. Doehl, D. Farley, C. Baird, K.L. Lancaster, C.D. Murphy, N. Booth, C. Spindloe, P. McKenna, N. Neumann, M. Roth, R. Kodama, N. Woolsey, J. Phys. B At. Mol. Opt. Phys. 50, 245006 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Y.B. Zeldovich, Y.P. Raizer, Physics of Shock-Waves and High-Temperature Hydrodynamic Phenomena, Academic P (Dover Pubn Inc, New York and London, 2002) (illustrated edition) Google Scholar
  21. 21.
    H.K. Chung, M.H. Chen, W.L. Morgan, Y. Ralchenko, R.W. Lee, High Energy Density Phys. 1(1), 3–12 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    V.A. Boiko, A.Y. Faenov, S.A. Pikuz, U.I. Safranova, Mon. Not. R Astron. Soc. 181, 107 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    A.I. Faenov, T.A. Pikuz, I.Yu. Skobelev, A.I. Magunov, V.P. Efremov, M. Servol, F. Quéré, M. Bougeard, P. Monot, P. Martin, M. Francucci, G. Petrocelli, P. Audebert, Lett. JETP 80, 730 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York and London, 1974)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures RASMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations