Applied Physics B

, 125:27 | Cite as

A new approach to digital content privacy using quantum spin and finite-state machine

  • Hafiz Muhammad Waseem
  • Majid KhanEmail author


Transmission of digital contents over public channel with access restricted to intended beneficiary even the contents are intercepted by others. In technological ages, cryptography plays a vital role in broadcasting, network communication, cell phones, etc. for transmitting sensitive information. The era of quantum information processing has many applications in daily life and one of its implications in data security. The data security and quantum information are two different modules of information processing that uses the notion of qubit model instead of classical information theory. It uses quantum mechanics instead of classical mechanics for information processing (covert communication). Elements of quantum theory have energy and angular momentum called spin, which carries the polarization. The purpose of writing this article is to introduce the concept spinning from quantum dynamics in data security, which leads to the development of quantum cryptography. The scope of this article is to protect contents’ privacy by polarized spin matrices passed by finite-state machine at secret phase information.



Both authors Dr. Majid Khan and Hafiz Muhammad Waseem are greatly thankful to Vice Chancellor Dr. Syed Wilayat Hussain and Dean Dr. Iqbal Rasool Memon, Institute of Space Technology, Islamabad Pakistan, for providing the decent environment for research and development.


  1. 1.
    C.E. Shannon, Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Uhl, A. Pommer, 2004. Image and video encryption: from digital rights management to secured personal communication (Vol. 15). Springer, HeidelbergzbMATHGoogle Scholar
  3. 3.
    B. Murugan, A.G. Nanjappa Gounder, S. Manohar, A hybrid image encryption algorithm using chaos and Conway’s game− of− life cellular automata. Secur. Commun. Netw. 9(7), 634–651 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Li, G. Chen, A. Cheung, B. Bhargava, K.T. Lo, On the design of perceptual MPEG− video encryption algorithms. IEEE Trans. Circ. Syst. Video Technol. 17(2), 214–223 (2007)CrossRefGoogle Scholar
  5. 5.
    F. Pareschi, R. Rovatti, G. Setti, On statistical tests for randomness included in the NIST SP800− 22 test suite and based on the binomial distribution. IEEE Trans. Inf. Forensics Secur. 7(2), 491–505 (2012)CrossRefGoogle Scholar
  6. 6.
    B. Yang, X. Liao. A new color image encryption scheme based on logistic map over the finite field Z N. Multimed. Tools Appl. 77(16), 21803–21821 (2018)CrossRefGoogle Scholar
  7. 7.
    R. Enayatifar, A.H. Abdullah, I.F. Isnin, A. Altameem, M. Lee, Image encryption using a synchronous permutation− diffusion technique. Opt. Lasers Eng. 90, 146–154 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Hamza, F. Titouna, A novel sensitive image encryption algorithm based on the Zaslavsky chaotic map. Inform. Secur. J. A Glob. Perspect. 25(4–6), 162–179 (2016)CrossRefGoogle Scholar
  9. 9.
    X.J. Tong, M. Zhang, Z. Wang, J. Ma, A joint color image encryption and compression scheme based on hyper− chaotic system. Nonlinear Dyn. 84(4), 2333–2356 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, D. Xiao, Self− adaptive permutation and combined global diffusion for chaotic color image encryption. AEU Int. J. Electron. Commun. 68(4), 361–368 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Wang, L. Teng, X. Qin, A novel colour image encryption algorithm based on chaos. Sig. Process. 92(4), 1101–1108 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    L. Zhang, X. Liao, X. Wang, An image encryption approach based on chaotic maps. Chaos, Solitons Fractals 24(3), 759–765 (2005)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Q. Zhou, K.W. Wong, X. Liao, T. Xiang, Y. Hu, Parallel image encryption algorithm based on discretized chaotic map. Chaos, Solitons Fractals 38(4), 1081–1092 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    H. Gao, Y. Zhang, S. Liang, D. Li, A new chaotic algorithm for image encryption. Chaos, Solitons Fractals 29(2), 393–399 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Mao, G. Chen, S. Lian, A novel fast image encryption scheme based on 3D chaotic baker maps. Int. J. Bifurc. Chaos 14(10), 3613–3624 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Etemadi Borujeni, M. Eshghi, 2009. Chaotic image encryption design using Tompkins–Paige algorithm. Math. Probl. Eng. 2009Google Scholar
  17. 17.
    G. Zhang, Q. Liu, A novel image encryption method based on total shuffling scheme. Opt. Commun. 284(12), 2775–2780 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Abushgra, K.M. Elleithy, A shared secret key initiated By EPR authentication and Qubit transmission channels. IEEE Access 5, 17753–17763 (2017)CrossRefGoogle Scholar
  19. 19.
    R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public− key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  20. 20.
    W. Diffie, M. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
  21. 21.
    M.R. Albrecht, K.G. Paterson, G.J. Watson Plaintext recovery attacks against SSH. in 30th IEEE Symposium on Security and Privacy, 2009. (IEEE, 2009), pp. 16–26Google Scholar
  22. 22.
    T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    F. Ahmed, A. Anees, V.U. Abbas, M.Y. Siyal, A noisy channel tolerant image encryption scheme. Wirel. Personal Commun 77(4), 2771–2791 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Morris, Implications of quantum information processing on military operations. Cyber Def. Rev. 2(3) (2015)Google Scholar
  25. 25.
    J. Preskill, Introduction to quantum information (part 1). Institute for Quantum Computing—CSSQI 2012 (2012), Online Lecture,
  26. 26.
    C. H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, Theor. Comput. Sci. 560, 7–11 (2014) MathSciNetCrossRefGoogle Scholar
  27. 27.
    R.J. Hughes, W.T. Buttler, P.G. Kwiat, S.K. Lamoreaux, G.G. Luther, G.L. Morgan, J.E. Nordholt, C.G. Peterson, Quantum cryptography for secure free− space communications. in Free− Space Laser Communication Technologies XI, vol. 3615 (International Society for Optics and Photonics, 1999), pp. 98–104Google Scholar
  28. 28.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    H.K. Lo, X. Ma, K. Chen, Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    M. Khan, H.M. Waseem, A novel image encryption scheme based on quantum dynamical spinning and rotations. PloS One 13(11), .e0206460 (2018)CrossRefGoogle Scholar
  31. 31.
    S.E. Venegas− Andraca, S. Bose, Quantum computation and image processing: new trends in artificial intelligence. in IJCAI (2003) p. 1563Google Scholar
  32. 32.
    S.E. Venegas− Andraca, S. Bose, Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation, vol. 5105. (International Society for Optics and Photonics, 2003 ), pp. 137–148Google Scholar
  33. 33.
    M. Lanzagorta, J. Uhlmann, Quantum algorithmic methods for computational geometry. Math. Struct. Comput. Sci. 20(6), 1117–1125 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    C.A. Trugenberger, Probabilistic quantum memories. Phys. Rev. Lett. 87(6), 067901 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    C.A. Trugenberger, Phase transitions in quantum pattern recognition. Phys. Rev. Lett. 89(27), 277903 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    C.A. Trugenberger, Quantum pattern recognition. Quantum Inf. Process. 1(6), 471–493 (2002)MathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Abal, R. Donangelo, H. Fort, Conditional strategies in iterated quantum games. Physica A 387(21), 5326–5332 (2008)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring. in 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings. (IEEE, 1994), pp. 124–134Google Scholar
  39. 39.
    N. Zhou, Y. Liu, G. Zeng, J. Xiong, F. Zhu, Novel qubit block encryption algorithm with hybrid keys. Physica A 375(2), 693–698 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Y.G. Yang, J. Xia, X. Jia, H. Zhang, Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    J. Branson, Quantum Physics 130. UCSD (2002)
  42. 42.
    T. Guhr, A. Müller–Groeling, H.A. Weidenmüller, Random-matrix theories in quantum physics: common concepts. Phy. Reports 299, 189–425 (1998)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    H.M. Waseem, M. Khan, Information confidentiality using quantum spinning, rotation and finite state machine. Int. J. Theor. Phys. 57(11), 3584–3594 (2018)CrossRefGoogle Scholar
  44. 44.
    H.M. Waseem, M. Khan, T. Shah, Image privacy scheme using quantum spinning and rotation. J. Electron. Imaging 27(6), 063022 (2018)CrossRefGoogle Scholar
  45. 45.
    M. Khan, T. Shah, An efficient chaotic image encryption scheme. Neural Comput. Appl. 26(5), 1137–1148 (2015)CrossRefGoogle Scholar
  46. 46.
    B. Stoyanov, K. Kordov, Image encryption using Chebyshev map and rotation equation. Entropy 17(4), 2117–2139 (2015)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    M. Khan, A novel image encryption scheme based on multiple chaotic S− boxes. Nonlinear Dyn. 82(1–2), 527–533 (2015)MathSciNetCrossRefGoogle Scholar
  48. 48.
    S.M. Seyedzadeh, B. Norouzi, M.R. Mosavi, S. Mirzakuchaki, A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81(1–2), 511–529 (2015)MathSciNetCrossRefGoogle Scholar
  49. 49.
    H. Varshney, H. Gupta, M. Kushwaha, Image encryption using chaotic logistic map. Int. J. Electr. Electron. Comput. Sci. Eng. 4, 40–45 (2017)Google Scholar
  50. 50.
    B. Norouzi, S.M. Seyedzadeh, S. Mirzakuchaki, M.R. Mosavi, A novel image encryption based on row− column, masking and main diffusion processes with hyper chaos. Multimed. Tools Appl. 74(3), 781–811 (2015)CrossRefGoogle Scholar
  51. 51.
    B. Norouzi, S. Mirzakuchaki, S.M. Seyedzadeh, M.R. Mosavi, A simple, sensitive and secure image encryption algorithm based on hyper− chaotic system with only one round diffusion process. Multimed. Tools Appl. 71(3), 1469–1497 (2014)CrossRefGoogle Scholar
  52. 52.
    R.E. Boriga, A.C. Dăscălescu, A.V. Diaconu, A new fast image encryption scheme based on 2D chaotic maps. IAENG Int. J. Comput. Sci. 41(4), 249–258 (2014)Google Scholar
  53. 53.
    I. Hussain, A. Anees, M. Aslam, R. Ahmed, N. Siddiqui, A noise resistant symmetric key cryptosystem based on S 8 S− boxes and chaotic maps. Eur. Phys. J. Plus 133, 1–23 (2018)CrossRefGoogle Scholar
  54. 54.
    M. Khan, T. Shah, A novel image encryption technique based on Hénon chaotic map and S 8 symmetric group. Neural Comput. Appl. 25(7–8), 1717–1722 (2014)CrossRefGoogle Scholar
  55. 55.
    J. Ahmad, S.O. Hwang, A secure image encryption scheme based on chaotic maps and affine transformation. Multimed. Tools Appl. 75(21), 13951–13976 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringInstitute of Space TechnologyIslamabadPakistan
  2. 2.Department of Applied Mathematics and StatisticsInstitute of Space TechnologyIslamabadPakistan
  3. 3.Cyber and Information Security Lab (CISL)Institute of Space TechnologyIslamabadPakistan

Personalised recommendations