Frequency upconversion mechanism in Ho3+/Yb3+-codoped TeO2–TiO2–La2O3 glasses
- 32 Downloads
Abstract
Frequency upconversion from Ho3+/Yb3+-codoped glass or crystal under Yb3+ sensitization is a known phenomenon. However, inconsistencies are prevalent in the understanding of double energy transfer mechanisms for Ho3+/Yb3+-codoped systems. In this context, rate equations are proposed for Ho3+/Yb3+-codoped low-phonon TeO2–TiO2–La2O3 glass under Yb3+ sensitization with continuous and pulsed excitations. The proposed rate equations are validated with experimental results to elucidate the mechanisms responsible for populating 5(S2, F4) and 5F5 energy levels of Ho3+ ion. The solutions of rate equations with experimental results are substantiating the occurrence of both excited state absorption (ESA) and energy transfer upconversion (ETU) mechanisms in populating Ho3+:5(S2, F4) level, though higher concentration of Ho3+ ion would decrease the probability of ETU and increase of ESA. In contrast, Ho3+:5F5 level has been populated via ETU only. Numerical solutions to the rate equations are also proposed to elucidate the mechanics for populating 5(S2, F4) and 5F5 levels of Ho3+ ion. The proposed rate equation for pulsed excitation explains the characteristics of respective decay curves, which are further used to quantify energy transfer coefficient (W02) as (1.77 ± 0.12) × 10− 17cm3 s−1 for Ho3+/Yb3+-codoped TTL glass host.
Notes
Acknowledgements
Authors would like to thank Dr. K. Muraleedharan, Director, CSIR-CGCRI, and Dr Ranjan Sen, Head, Glass Division, for their kind encouragement and permission to publish this work. One of the authors (GG) is thankful to BRNS/DAE for financial support in the form of SRF.
Supplementary material
References
- 1.A. Diening, S. Kück:, J. Appl. Phys. 87, 4063 (2000)ADSCrossRefGoogle Scholar
- 2.W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, P. Solarz, T. Lukasiewicz, Appl. Phys. Lett. 79, 3026 (2001)ADSCrossRefGoogle Scholar
- 3.R.K. Watts, J. Chem. Phys. 53, 3552 (1970)ADSCrossRefGoogle Scholar
- 4.M.A. Chamarro, R. Cases, J. Lumin. 42, 267 (1988)CrossRefGoogle Scholar
- 5.X. Wang, H. Lin, D. Yang, L. Lin, E. Yue-Bun Pun, J. Appl. Phys. 101, 113535 (2007)ADSCrossRefGoogle Scholar
- 6.W. Xu, X. Gao, L. Zheng, Z. Zhang, W. Cao, Opt. Express 20, 18127 (2012)ADSCrossRefGoogle Scholar
- 7.X. Yu, Y. Qin, M. Gao, L. Duan, Z. Jiang, L. Gou, P. Zhao, Z. Li, J. Lumin. 153, 1 (2014)CrossRefGoogle Scholar
- 8.E. la Rosa, P. Salas, H. Desirena, C. Angeles, R.A. Rodriguez, Appl. Phys. Lett. 87, 241912 (2005)ADSCrossRefGoogle Scholar
- 9.A.V. Kiryanov, V. Aboites, A.M. Belovolov, M.I. Timoshechkin, M.I. Belovolov, M.J. Damzen, A. Minassian, Opt. Express 10, 832 (2002)ADSCrossRefGoogle Scholar
- 10.D. Ni, W. Bu, S. Zhang, X. Zheng, M. Li, H. Xing, Q. Xiao, Y. Liu, Y. Hua, L. Zhou, W. Peng, K. Zhao, J. Shi, Adv. Funct. Mater. 24, 6613 (2014)CrossRefGoogle Scholar
- 11.S.D. Jackson, S. Mossman, Appl. Opt. 42, 3546 (2003)ADSCrossRefGoogle Scholar
- 12.X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, X. Zhang, J. Alloys Compd. 454, 510 (2008)CrossRefGoogle Scholar
- 13.X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, X. Zhang, J. Phys. Chem. Solids 68, 1566 (2007)ADSCrossRefGoogle Scholar
- 14.D.A. Simpson, W.E.K. Gibbs, S.F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, G.W. Baxter, Opt. Express 16, 13781 (2008)ADSCrossRefGoogle Scholar
- 15.S. Balaji, D. Ghosh, K. Biswas, G. Gupta, K. Annapurna, Phys. Chem. Chem. Phys. 18, 33115 (2016)CrossRefGoogle Scholar
- 16.B. Di Bartolo, X. Chen, Advances in Energy Transfer Processes (World Scientific, Singapore, 2001)CrossRefGoogle Scholar
- 17.L. Gomes, D. Milanese, J. Lousteau, N. Boetti, S.D. Jackson, J. Appl. Phys. 109, 103110 (2011)ADSCrossRefGoogle Scholar
- 18.G. Gupta, S. Balaji, K. Biswas, A. Kalyandurg, J. Am. Ceram. Soc. (2018). https://doi.org/10.1111/jace.15558)CrossRefGoogle Scholar