Applied Physics B

, 125:30 | Cite as

16-Port tunable fiber laser based on a digital micromirror device in C-band

  • Jinliang Li
  • Xiao ChenEmail author
  • Min Lv
  • Yunshu Gao
  • Genxiang Chen


A 16-port tunable fiber laser is experimentally demonstrated based on a digital micromirror device (DMD). This laser has the capacity of tuning wavelength from 16 ports flexibly and independently in the whole C-band by only one 0.55-in. DMD chip, a blazed grating for waveband de-multiplexing and a zoom optics system for beam mapping. The results show the outputs from all fiber rings exhibit high uniformity, stability and reliability. The 3-dB linewidth of laser output is less than 0.02 nm, the SMSR exceeds 50 dB and the crosstalk between wavelength channels from adjacent ports is up to 45 dB. The wavelength shift is below 0.02 nm and the output power fluctuation is better than 0.13 dB within 1 h. This multi-port tunable fiber laser is expected to play the role of 16 or even more independent tunable lasers in network application.



We acknowledge the financial support from the National Science Foundation of China (Grant no. 61675238), and National Key Scientific Instrument and Equipment Development Project (Grant no. 61627814).


  1. 1.
    J.Y. Wu, T. Pan, P. Cao, X.F. Hu, L.P. Jiang, X.H. Jiang, Y.K. Su, Compact wavelength blocker based on silicon microring resonator with nested pair of subrings. Opto-electronics and communication conference and Australian Conference on Optical Fibre Technology, Melbourne, VIC, pp. 563–565 (2014)Google Scholar
  2. 2.
    X.L. Fan, W. Zhou, S.M. Wang, X. Liu, Y. Wang, D.Y. Shen, Compact dual-wavelength thulium-doped fiber laser employing a double-ring filter. Appl. Opt. 55, 3319–3322 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    C.S. Kim, R.M. Sova, J.U. Kang, Tunable multiwavelength all-fiber Raman source using fiber Sagnac loop filter. Opt. Commun. 218, 291–295 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    C.C. Lee, S. Chi, Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback. Opt. Lett. 25, 1774–1776 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Zhao, J. Chang, Q.P. Wang, J.S. Ni, Z.Q. Song, H.F. Qi, C. Wang, P.P. Wang, L. Gao, Z.H. Sun, G.P. Lv, T.Y. Liu, G.D. Peng, Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG. Opt. Exp. 21, 22515–22522 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    B. Zhou, H.H. Jiang, R.Z. Wang, C.T. Lu, Optical fiber Fabry–Perot filter with tunable cavity for high-precision resonance wavelength adjustment. J. Lightwave Technol. 33, 2950–2954 (2015)Google Scholar
  7. 7.
    C.H. Yeh, F.Y. Shih, C.H. Wang, C.W. Chow, S. Chi, Cost-effective wavelength-tunable fiber laser using self-seeding Fabry–Perot laser diode. Opt. Exp. 16, 435–439 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    W. Yang, Y. Liu, L.F. Xiao, Z.X. Yang, Wavelength-tunable Erbium-doped fiber ring laser employing an acousto-optic filter. J. Lightwave Technol. 28, 118–122 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S. Calvez, X. Rejeaunier, P. Mollier, J.-P. Goedgebuer, W.T. Rhodes, Erbium-doped fiber laser tuning using two cascaded unbalanced Mach–Zehnder Interferometers as intracavity filter: numerical analysis and experimental confirmation. J. Lightwave Technol. 19, 893–898 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Sakurai, M. Kawasugi, Y. Hotta, M.D. Saad Khan, H. Oguri, K. Takeuchi, S. Michihata, N. Uehara, LCOS-based wavelength blocker array with channel-by-channel variable center wavelength and bandwidth. IEEE Photon. Technol. Lett. 23, 989–991 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    D. Sinefeld, D.M. Marom, Tunable fiber ring laser with an intracavity high resolution filter employing two-dimensional dispersion and LCoS modulator. Opt. Lett. 37, 1–3 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    B. Robertson, H. Yang, M.M. Redmond, N. Collings, J.R. Moore, J. Liu, A.M. Jeziorska-Chapman, M. Pivnenko, S. Lee, A. Wonfor, I.H. White, W.A. Crossland, D.P. Chu, Demonstration of multi-casting in a 1 × 9 LCOS wavelength selective switch. J. Lightwave Technol. 32, 402–410 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    F. Xiao, K. Alameh, T. Lee, Opto-VLSI-based tunable single-mode fiber laser. Opt. Exp. 17, 18676–18680 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Q. Ai, X. Chen, M. Tian, B.B. Yan, Y. Zhang, F.J. Song, G.X. Chen, X.Z. Sang, Y.Q. Wang, F. Xiao, K. Alameh, Demonstration of multi-wavelength tunable fiber lasers based on a digital micromirror device processor. Appl. Opt. 54, 603–607 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    D. Zhang, B.B. Yan, K.Z. Huang, Q. Yang, X. Chen, G.X. Chen, X.Z. Sang, Opto-DMD-based tunable triple-channel-wavelength fiber laser. Optoelectronic Devices & Integration IV. International Society for Optics and Photonics (2012)Google Scholar
  16. 16.
    X. Chen, B.B. Yan, F.J. Song, Y.Q. Wang, F. Xiao, K. Alameh, Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers. Appl. Opt. 51, 7214–7220 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    A. Billaud, P.C. Shardlow, W.A. Clarkson, Wavelength-flexible thulium-doped fiber laser employing a digital micro-mirror device tuning element. Conference on lasers and electro-optics (CLEO), San Jose, CA, pp. 1–2 (2016)Google Scholar
  18. 18.
    M.M. Tao, B. Tao, Z.Y. Hu, G.B. Feng, X.S. Ye, J. Zhao, Development of a 2 µm Tm-doped fiber laser for hyperspectral absorption spectroscopy applications. Opt. Exp. 25, 32386–32394 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceMINZU University of ChinaBeijingPeople’s Republic of China

Personalised recommendations