Advertisement

Applied Physics B

, 125:23 | Cite as

Isotope-selective laser photoionization of tin in supersonic atomic beam

  • S. G. NakhateEmail author
  • Soumen Bhattacharyya
  • Sheo Mukund
  • Rita Behera
  • Swarupananda Pradhan
  • M. S. Bhatia
  • V. M. Datar
  • V. Nanal
  • R. G. Pillay
  • S. J. Wategaonkar
Article
  • 84 Downloads

Abstract

The isotope 124Sn enriched to better than 50% is needed in substantial quantity as detector material for the proposed neutrinoless double beta decay (0νββ) experiment in India (TIN.TIN). Present work investigates isotope-selective laser photoionization scheme for 124Sn. Transition to the first excited state from the ground state lies at 286.3 nm having short lifetime (~ 5 ns) and isotope shift (IS), Δν(124–120) = 441 MHz. However, the availability of high repetition rate (kHz), narrowband tunable pulsed laser in UV with low temporal jitter is a technological impediment for achieving isotopic selectivity in this transition. An alternate three-color photoionization scheme is proposed for separation of 124Sn. Laser vaporization of tin followed by supersonic expansion in a molecular beam apparatus provided the tin atomic beam. Tin atoms were first excited to the 5p6s,3P1 state from the 5p2,3P0 ground state by a broadband pulsed dye laser (λ1 = 286.3 nm). Isotopic selectivity was achieved in the second excitation step at λ2 = 855.2 nm by a narrowband continuous wave laser. Subsequently, resonant photoionization at λ3 = 694.7 nm to a newly observed autoionizing state at 60,992.9 cm−1 provided efficient photoionization. The IS for all even and hyperfine splitting for odd isotopes have been measured for the 855.2 nm transition. A selectivity factor of 24 is achieved for 124Sn isotope. The absorption cross sections of the three excitation steps is reasonably high to have an efficient photoionization scheme.

Notes

Acknowledgements

The authors are thankful to R. K. Rajawat for his encouragement and support to carry out this work. The authors are also thankful to V. S. Rawat for lending some equipment’s for conducting the experiment.

References

  1. 1.
    A.B. D’yachkov, S.K. Kovalevich, A.V. Labozin, V.P. Labozin, S.M. Mironov, V.Ya. Panchenko, V.A. Firsov, G.O. Tsvetkov, G.G. Shatalova, Quantum Electron. 42, 953 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Park, D.-H. Kwon, Y.H. Cha, T.-S. Kim, J. Han, K.-H. Ko, D.-Y. Jeong, C.-J. Kim, J. Nucl. Sci. Technol. 6, 111 (2008)CrossRefGoogle Scholar
  3. 3.
    M.H. Adatepe, M. Welch, R.G. Evens, E.J. Potchen, Am. J. Roentgenol. 112, 701 (1971)CrossRefGoogle Scholar
  4. 4.
    S. Wenhao, S. Daohai, H. Yong: In, Isotope production and applications in the 21st century, in Proceedings of the 3rd International conference on Isotopes, vol 226, ed. by N.R. Stevenson (World Scientific Publishing Co. Pte. Ltd., London, 2000)Google Scholar
  5. 5.
    S.C. Srivastava, H.L. Atkins, G.T. Krishnamurthy, I. Zanzi, E.B. Silberstein, G. Meinken, L.F. Mausner, F. Swailem, T. D’Alessandro, C.J. Cabahug, Y. Lau, T. Park, S. Madajewicz, Clin. Cancer Res. 4, 61 (1998)Google Scholar
  6. 6.
    S.C. Srivastava, in Technetium, Rhenium and Other Metals in Chemistry and Nuclear Medicine, ed. by M. Nicolini, E. Mazzi (SGE Editoriali, Padua, 1999), p. 305Google Scholar
  7. 7.
    Y. Fukuda, Super-Kamiokande Collaboration et al., Phys. Rev. Lett. 81, 1562 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    R. Wendell, Super-Kamiokande Collaboration et al., Phys. Rev. D 81, 092004 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    O. Cremonesi, M. Pavan, Adv. High Energy Phys. 2014, 951432 (2014)CrossRefGoogle Scholar
  10. 10.
    N.K. Mondal, Pramana 79, 1003 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    V.Y. Baranov, in Isotopes: Properties, Preparation, Applications (Izdat; Moscow, 2000), p. 703 (ISBN 5-86656-100-X) Google Scholar
  12. 12.
    V. Nanal, EPJ Web Conf. 66, 08005 (2014)CrossRefGoogle Scholar
  13. 13.
    J.C. Travis, J.D. Fassett, L.J. Moore: In, Resonance Ionization Spectroscopy: A Survey of Elements Detected Using Resonance Ionization Mass Spectrometry with Thermal Vaporization, ed. by G.S. Hurst, M.G. Payne (The Institute of Physics, Bristol 1984), p. 97Google Scholar
  14. 14.
    F. Scheerer, F. Albus, F. Ames, H.-J. Kluge, N. Trautmann, Spectrochim. Acta B 47, 795 (1992)CrossRefGoogle Scholar
  15. 15.
    E.B. Saloman, Spectrochim. Acta B 47, 517 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    W.M. Fairbank Jr, M.T. Spaar, J.E. Parks, J.M.R. Hutchinson, Phys. Rev. A 40, 2195 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    P.E.G. Baird, S.A. Blundell, G. Burrows, C.J. Foot, D.N. G.Meiselt, G.K. Stacey, Woodgate, J. Phys. B At. Mol. Phys. 16, 2485 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    M. Anselment, K. Bekk, A. Hanser, H. Hoeffgen, G. Meisel, S. Goring, H. Rebel, G. Schatz, Phys. Rev. C 34, 1052 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    J.D. Silver, D.N. Stacey, Proc. R. Soc. Lond. A 332, 129 (1973)ADSCrossRefGoogle Scholar
  20. 20.
    S. Mukund, S. Bhattacharyya, S.G. Nakhate, J. Quant. Spectr. Rad. Trans. 147, 274 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L.C. Balling, J.J. Wright, Appl. Phys. Lett. 29, 411 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    H.G. Kuhn, in Atomic Spectra (Longmans, London, 1969)Google Scholar
  23. 23.
    L. Holmgren, S. Svanberg, Phys. Ser. 5, 135 (1972)ADSCrossRefGoogle Scholar
  24. 24.
    A. Kramida, Yu Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (ver. 5.6.1), [Online] National Institute of Standards and Technology, Gaithersburg, MD. https://physics.nist.gov/asd. Accessed 29 Nov 2018. (2018).  https://doi.org/10.18434/T4W30F

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. G. Nakhate
    • 1
    • 3
    Email author
  • Soumen Bhattacharyya
    • 1
    • 3
  • Sheo Mukund
    • 1
  • Rita Behera
    • 2
    • 3
  • Swarupananda Pradhan
    • 2
    • 3
  • M. S. Bhatia
    • 4
  • V. M. Datar
    • 4
  • V. Nanal
    • 4
  • R. G. Pillay
    • 4
  • S. J. Wategaonkar
    • 4
  1. 1.Atomic and Molecular Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Laser and Plasma Technology DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Homi Bhabha National Institute, AnushaktinagarMumbaiIndia
  4. 4.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations