Advertisement

Applied Physics B

, 125:22 | Cite as

Incubation models for under-threshold laser ablation with thermal dissipation

  • R. Benocci
  • D. Batani
  • H. E. Roman
Article
  • 27 Downloads

Abstract

In laser incubation, the irradiated material reaches the ablation threshold after N pulses at a fluence (energy per unit area) lower than the one required for a single shot. In this work, a new unified picture of incubation is presented describing the growth rate of incubation sites in terms of an analytical expression having four parameters which can be fitted to the experimental data. Our model predicts two crossovers as a function of the pulse number N: \({N}_{\text{c}}^{\text{'}}\) and \({ N}_{\text{c}}\), describing the different incubation behaviors of materials under the action of ‘below-threshold’ laser pulses. For dielectric materials, and metals irradiated with short laser pulses, the first crossover indicates a transition from a dielectric type of surface response towards an increasingly ‘metallic’ behavior, consistent with the experimental observations. The second crossover determines the transition to the final stage of the modified surface. In this large N limit, the absorption coefficient of the surface achieves its saturation. For metals irradiated by long laser pulses, \({N}_{\text{c}}^{\text{'}}\)≃ 0 and \({N}_{\text{c}}\) ≫ 1, yielding an approximate power-law behavior of fluence versus N, over a broad range of N values, in agreement with the observations. It is found that one of the fitting parameters denoted here as the incubation exponent, δ, allows us to classify the material response as a dielectric (δ\(\gtrsim\)1) or a metallic (δ ≪ 1) one.

References

  1. 1.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997).  https://doi.org/10.1364/JOSAB.14.002716 ADSCrossRefGoogle Scholar
  2. 2.
    J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat. Mass. Transf. 48, 501 (2005).  https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.015 CrossRefGoogle Scholar
  3. 3.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996).  https://doi.org/10.1103/PhysRevB.53.1749 ADSCrossRefGoogle Scholar
  4. 4.
    C.W. Carr, H.B. Radousky, S.G. Demos, Phys. Rev. Lett. 91, 127402 (2003).  https://doi.org/10.1103/PhysRevLett.91.127402 ADSCrossRefGoogle Scholar
  5. 5.
    B.N. Chichkov, C. Momma, S. Nolte, F.v. Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996).  https://doi.org/10.1007/BF01567637 ADSCrossRefGoogle Scholar
  6. 6.
    M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, Phys. Rev. B 71, 115109 (2005).  https://doi.org/10.1103/PhysRevB.71.115109 ADSCrossRefGoogle Scholar
  7. 7.
    L.A. Emmert, W. Rudolph, in Laser-induced damage in optical materials, 1st ed., ed. by D. Ristau (CRC Press/Taylor & Francis Group, Abingdon, 2016)Google Scholar
  8. 8.
    R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys. Rev. B 62, 13, 167 (2000)CrossRefGoogle Scholar
  9. 9.
    R. Stoian, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Phys. Rev. Lett. 88, 097 603 (2002)CrossRefGoogle Scholar
  10. 10.
    C.R. Phipps. Laser ablation and its application. (Springer, New York, 2007)CrossRefGoogle Scholar
  11. 11.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949 (2002).  https://doi.org/10.1063/1.1447555 ADSCrossRefGoogle Scholar
  12. 12.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, J. Opt. Soc. Am. B 13, 459 (1996).  https://doi.org/10.1364/JOSAB.13.000459 ADSCrossRefGoogle Scholar
  13. 13.
    E.G. Gamaly, N.R. Madsen, M. Duering, A.V. Rode, V.Z. Kolev, B. Luther-Davies, Phys. Rev. B 71, 174405 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    M. Lenzner, Int. J. Mod. Phys. B 13, 1559 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 82, 3883 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Phys. Rev. B 61, 11 437 (2000)Google Scholar
  18. 18.
    J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19–25 (2002).  https://doi.org/10.1007/s003390100893 ADSCrossRefGoogle Scholar
  19. 19.
    S. Küper, M. Stuke, Appl. Phys. B 44, 199–204 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Appl. Phys. A 71, 883–884 (2000)CrossRefGoogle Scholar
  21. 21.
    N. Ichimura, H. Kondo, Y. Harada, S. Hashimoto, J. Lumin. 87–89, 586–588 (2000)CrossRefGoogle Scholar
  22. 22.
    G. Raciukaitis, M. Brikas, P. Gecys, M. Gedvilas. in High-power laser ablation VII, ed. by C. R. Phipps, Proc. of SPIE Vol. 7005, 70052L, (2008), pp. 0277–786.  https://doi.org/10.1117/12.782937
  23. 23.
    S. Martin, A. Hertwig, M. Lenzner, J. Kruger, W. Kautek, Appl. Phys. A 77, 657–665 (2003)CrossRefGoogle Scholar
  24. 24.
    Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648–659 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    D. Bauerle. Laser processing and chemistry, 4th Edition, (Springer, Switzerland AG, 2001)Google Scholar
  26. 26.
    J. Krüger, W. Kautek, Ultrashort pulse laser interaction with dielectrics and polymers. Adv. Polym. Sci. 168, 247–289 (2004)CrossRefGoogle Scholar
  27. 27.
    Y. Jee, M.F. Becker, R.M. WalserLaser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B 5, 648–659 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    A. Fatemi, L. Yang. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int. J. Fatigue 20, 9–34 (1998)CrossRefGoogle Scholar
  29. 29.
    K.S. Song, R.T. Williams, Self-trapped excitons (Springer, Berlin, 1993)CrossRefGoogle Scholar
  30. 30.
    R.F. Haglund, N. Itoh, in Laser ablation. principles and applications, ed. by J.C. Miller (Springer, Berlin, 1994)Google Scholar
  31. 31.
    N. Lasemi, U. Pacher, C. Rentenberger, O. Bomatí-Miguel, W. Kautek, Laser-assisted synthesis of colloidal Ni/Niox core/shell nanoparticles in water and alcoholic solvents. ChemPhysChem 18, 1118–1124 (2017)CrossRefGoogle Scholar
  32. 32.
    C. Wu, M.S. Christensen, J.-M. Savolainen, P. Balling, L.V. Zhigilei, Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target. Phys. Rev. B 91, 035413 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    E.T. Karim, M.V. Shugaev, C. Wu, Z. Lin, H. Matsumoto, M. Conneran, J. Kleinert, R.F. Hainsey, L.V. Zhigilei, Experimental characterization and atomistic modeling of interfacial void formation and detachment in short pulse laser processing of metal surfaces covered by solid transparent overlayers. Appl. Phys. A 122, 407 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    N. Lasemi, U. Pacher, L.V. Zhigilei, O. Bomatí-Miguel, R. Lahoz, W. Kautek, Pulsed laser ablation and incubation of nickel, iron and tungsten in liquids and air. Appl. Surf. Sci. 433, 772–779 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    A.M. Howatson, P.G. Lund, J.D. Todd, Properties of matter, engineering tables and data, 41 (Springer, Dordrecht, 1972)CrossRefGoogle Scholar
  36. 36.
    T. Häfner, J. Heberle, M. Dobler, M. Schmidt, Influences on incubation in ps laser micromachining of steel alloys. J. Laser Appl. 28, 022605 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Ren, J.K. Chen, Y. Zhang, J. Appl. Phys. 110, 113102 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    J. Byskov-Nielsen, J. Matti Savolainen, M. Snogdahl Christensen, P. Balling, Appl Phys A 101, 97–101 (2010).  https://doi.org/10.1007/s00339-010-5766-1 ADSCrossRefGoogle Scholar
  39. 39.
    S. Küper, M. Stuke, Appl. Phys. Lett. 54, 4 (1989).  https://doi.org/10.1063/1.100831 ADSCrossRefGoogle Scholar
  40. 40.
    S. Baudach, J. Bonse, J. Krüger, W. Kautek. Appl. Surf. Sci. 154–155, 555–560 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    J. Bonse, J.M. Wrobel, J. Kruger, W. Kautek. Appl. Phys. A 72, 89–94 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    Z. Sun, M. Lenzner, W. Rudolph, Generic incubation law for laser damage and ablation thresholds. J. Appl. Phys. 117, 073102 (2015).  https://doi.org/10.1063/1.491328 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze dell’Ambiente e del Territorio e di Scienze della TerraUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications)TalenceFrance
  3. 3.Dipartimento di Fisica “G. Occhialini”Università degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations