Applied Physics B

, 125:21 | Cite as

Interferometric visualization of crack growth in glass plate

  • Brijesh Kumar SinghEmail author
  • Dalip Singh Mehta
  • P. Senthilkumaran


We present a potential tool to monitor growth of a crack in a glass plate using interferometry, where fringes characteristic of optical dislocations can be seen. It is experimentally observed that interference fringes can be used to visualize the stress field that is activated near the tip of a crack. In an interferometric setup, an optical wave-front is transmitted through the crack site of glass plate which results in a local phase jump in the test beam. This phase jump reveals itself in the fringe pattern in the form of fork fringes, where branching of fringes is seen at the crack tip and along the crack line. Using the Fourier transform fringe analysis method and phase-unwrapping method, we optically track the crack tip. The positions of fork fringes provide the location and trajectory of crack tip.



We thank the University Grant Commission (UGC) of India for the financial support [Grant No. F.30-356/2017 (BSR)].

Supplementary material

Supplementary material 1 (MP4 5514 KB)


  1. 1.
    E.E. Gdoutos, Fracture Mechanics Criteria and Application (Kluwer Academic Publishers, Dordrecht, 1990)CrossRefGoogle Scholar
  2. 2.
    R.G. Forman, V.E. Kearney, R. Engle, Numerical analysis of crack propagation in cyclic loaded structures. J. Basic Eng. 89, 459–464 (1967)CrossRefGoogle Scholar
  3. 3.
    D.A. Hills, P.A. Kelly, D.N. Dai, A.M. Korsunsky, Solution of Crack Problems: The Distributed Dislocation Techniques (Kluwer Academic Publishers, Dordrecht, 1996)CrossRefGoogle Scholar
  4. 4.
    G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H.L. Ewalds, R.J.H. Wanhill, Fracture Mechanics (Delftse Uitgevers Maatschappij, Delft, 1989)Google Scholar
  6. 6.
    G.P. Cherepanov, Mechanics of Brittle Fracture (MacGraw Hill, New York, 1979)zbMATHGoogle Scholar
  7. 7.
    L.B. Freund, Dynamic Fracture Mechanics (Cambridge University Press, Cambridge, 1990)CrossRefGoogle Scholar
  8. 8.
    S. Henaux, F. Creuzet, Crack tip morphology of slowly growing cracks in glass. J. Am. Ceram. Soc. 83, 415–417 (2000)CrossRefGoogle Scholar
  9. 9.
    B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D.N. Christodoulides, J.W. Fleischer, Wave and defect dynamics in nonlinear photonic Quasi crystals. Nature 440, 1166–1169 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    H.M. Westergaard, Bearing pressure and cracks. J. Appl. Mech. 6, 49–53 (1939)Google Scholar
  11. 11.
    D.S. Dugdale, C. Ruiz, Elasticity for Engineers (McGraw-Hill, New York, 1971)zbMATHGoogle Scholar
  12. 12.
    D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Bilby, A.H. Cottrell, K.H. Swinden, The spread of plastic yield from a notch. Proc. R. Soc. Lond. A 272, 304–314 (1963)ADSCrossRefGoogle Scholar
  14. 14.
    C. Atkinson, M.F. Kanninen, A simple representation of crack tip plasticity: the inclined strip yield superdislocation model. Int. J. Fracture 13, 151–163 (1977)CrossRefGoogle Scholar
  15. 15.
    M.F. Kanninen, C. Atkinson, C.E. Feddersen, A fatigue crack growth analysis method based on a simple representation of crack tip plasticity. Am. Soc. Test Mat. STP 637, 122–140 (1977)Google Scholar
  16. 16.
    I. Basistiy, M. Soskin, M. Vasnetsov, Optical wavefront dislocations and their properties. Opt. Commun. 119, 604–612 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    A.G. White, C.P. Smith, N.R. Heckenberg, H. Rubinsztein-Dunlop, R. Mcduff, C.O. Weiss, C. Tamm, Interferometric measurements of phase singularities in the output of a visible laser. J. Mod. Opt. 38, 2531–2541 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    D.P. Ghai, S. Vyas, P. Senthilkumaran, R.S. Sirohi, Detection of phase singularity using a lateral shear interferometer. Opt. Laser Eng. 46, 419–423 (2008)CrossRefGoogle Scholar
  19. 19.
    J. Nye, M. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A Math Phys. Sci. 336, 165–190 (1974)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    P. Senthilkumaran, Singularities in Physics and Engineering—Properties, Methods, and Applications (IOP Publishing, Bristol, 2018)CrossRefGoogle Scholar
  21. 21.
    M. Beijersbergen, R. Coerwinkel, M. Kristensen, J. Woerdman, Helical wavefront laser beams produced with a spiral phase plate. Opt. Commun. 112, 321–327 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    D.P. Ghai, P. Senthilkumaran, R. Sirohi, Adaptive helical mirror for generation of optical phase singularity. Appl. Opt. 47, 1378–1383 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Izdebskaya, V. Shvedov, A. Volyar, Generation of higher order optical vortices by a dielectric wedge. Opt. Lett. 30, 2472–2474 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    S. Vyas, P. Senthilkumaran, Vortices from wavefront tilts. Opt. Lasers Eng. 48, 834–840 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Vyas, P. Senthilkumaran, Two dimensional vortex lattices from pure wavefront tilts. Opt. Commun. 283, 2767–2771 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    G.R. Irwin, in Fracture Encyclopedia of Physics, Handbuch der Physic, ed. by Vol V.I. Flugge (Springer Verlag, Berlin, 1958), pp. 551–590Google Scholar
  27. 27.
    C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, S.G. Lipson, Adjustable spiral phase plate. Appl. Opt. 43, 2397–2399 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    B.K. Singh, D.S. Mehta, P. Senthilkumaran, Generation of vortices using cracked glass plate, in Proceedings of the International Conference on Fiber Optics and Photonics©OSA wp0.6, 2012Google Scholar
  29. 29.
    M. Takeda, H. Ina, S. Kobayashi, Fourier transform method of fringe-pattern analysis for computer-based topography and interferometry. JOSA 72, 156–160 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    T. Ishida, K. Kakushima, T. Mizoguchi, H. Fujita, Role of dislocation movement in the electrical conductance of nanocontacts. Sci. Rep. 2, 1–5 (2012)CrossRefGoogle Scholar
  31. 31.
    R.M. Goldstein, H.A. Zebken, C.L. Werner, Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23, 713–720 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley Inter-science, New York, 1998)zbMATHGoogle Scholar
  33. 33.
    B.K. Singh, M. Bahl, D.S. Mehta, P. Senthilkumaran, Study of internal energy flows in dipole vortex beams by knife edge test. Opt. Commun. 293, 15–21 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Brijesh Kumar Singh
    • 1
    Email author
  • Dalip Singh Mehta
    • 2
  • P. Senthilkumaran
    • 2
  1. 1.Physics DepartmentCentral University of RajasthanAjmerIndia
  2. 2.Physics DepartmentIndian Institute of Technology DelhiHauzKhasIndia

Personalised recommendations