Advertisement

Applied Physics B

, 125:15 | Cite as

Stimulated Brillouin scattering of terahertz electromagnetic pulses in paraelectrics

  • V. GrimalskyEmail author
  • S. Koshevaya
  • J. Escobedo-Alatorre
  • E. Jatirian-Foltides
Article
  • 32 Downloads

Abstract

The nonlinear acoustoelectromagnetic phenomena in the terahertz (THz) range in the crystalline paraelectric SrTiO3 are investigated theoretically. The goal is to investigate an appearance of short THz electromagnetic (EM) pulses. The moderate cooling to the temperature T ≈ 77 K is considered. The resonant three-wave interaction of two counterpropagating EM THz waves with the longitudinal acoustic wave of the difference frequency is under investigation that is called the stimulated Brillouin scattering. This resonant interaction is due to the quadratic nonlinearity called electrostriction. The appearance of short EM pulses is possible when the input amplitudes of the signal EM wave are comparable with the pump amplitude and the duration of the input pulses is quite long. In the temporal scale associated with the EM wave propagation within a crystal, the cubic EM nonlinearity and the EM wave dispersion affect this three-wave resonant interaction. Under the development of the resonant nonlinear interaction, the modulation instability occurs that results in the complex and even chaotic wave modulation.

Notes

Acknowledgements

The authors thank SEP-CONACyT, Mexico, for partial support of this work.

References

  1. 1.
    Yun-Shik, Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009)Google Scholar
  2. 2.
    M. Perenzoni, D.J. Paul, Eds, Physics and Applications of Terahertz Radiation (Springer, New York, 2014)CrossRefGoogle Scholar
  3. 3.
    S.A. Akhmanov, V.A. Vysloukh, A.S. Chirkin, Optics of Femtosecond Laser Pulses (AIP Publ., New York, 1992)Google Scholar
  4. 4.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2013)zbMATHGoogle Scholar
  5. 5.
    R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2013)Google Scholar
  6. 6.
    Y.S. Kivshar, G.P. Agrawal, Optical Solitons. From Fibers to Photonic Crystals (Academic Press, New York, 2003)Google Scholar
  7. 7.
    V. Grimalsky, S. Koshevaya, J. Escobedo-Alatorre, M. Tecpoyotl-Torres, J. Electromagn. Anal. Appl. (JEMAA) 8, 226 (2016).  https://doi.org/10.4236/jemaa.2016.810021 ADSCrossRefGoogle Scholar
  8. 8.
    M.J. Damzen, V.I. Vlad, V. Babin, A. Mocofanescu, Stimulated Brillouin Scattering. Fundamentals and Applications (IOP Publishing, Bristol, 2003)Google Scholar
  9. 9.
    G. Burlak, S. Koshevaya, E. Gutierrez-D, J. Sanchez-Mondragon, V. Grimalsky, Opt. Quant. Electron. 33, 661 (2001)CrossRefGoogle Scholar
  10. 10.
    V. Grimalsky, S. Koshevaya, G. Burlak, B. Salazar, J. Opt. Soc. Am. B 19, 689 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    I.S. Rez, Yu.M. Poplavko, Dielectrics. Basic Properties and Applications in Electronics (Radio and Svyaz’, Moscow, 1989) (in Russian)Google Scholar
  12. 12.
    Yu.M. Poplavko, L.P. Pereverzeva, S.O. Voronov, Yu.I. Yakimenko, Physical Material Science. Vol. 2. Dielectrics. (KPI Publising, Kiev, 2007). ISBN 978-966-622-256-8 (in Ukrainian) Google Scholar
  13. 13.
    S. Gevorgian, Ferroelectrics in Microwave Devices, Circuits and Systems (Springer, New York, 2009)CrossRefGoogle Scholar
  14. 14.
    O.G. Vendik (ed.), Ferroelectrics in Microwave Technology (Sov. Radio, Moscow, 1979) (in Russian)Google Scholar
  15. 15.
    I.V. Ivanov, G.V. Belokopytov, I.M. Buzin, V.M. Sychev, V.F. Chuprakov, Ferroelectrics 21, 405 (1978).  https://doi.org/10.1080/00150197808237279 (ISSN 00150193)CrossRefGoogle Scholar
  16. 16.
    I.V. Ivanov, I.M. Buzin, G.V. Belokopytov, V.M. Sychev, V.F. Chuprakov, Sov. Phys. J. 24, 684 (1981).  https://doi.org/10.1007/BF00941340 (ISSN 00385697)CrossRefGoogle Scholar
  17. 17.
    G.V. Belokopytov, I.V. Ivanov, M.E. Reshetnikov, V.A. Chistyaev, Pis’ma v Zhurnal Tekhnicheskoy Fiziki (English transl Tech. Phys. Lett.) 10, 1210 (1984)Google Scholar
  18. 18.
    G.V. Belokopytov: Radiophys. Quantum Electron. 30, 830 (1987) ISSN: 00338443,  https://doi.org/10.1007/BF01078863 ADSCrossRefGoogle Scholar
  19. 19.
    G.V. Belokopytov, V.A. Chistyaev, Radiophys. Quantum Electron. 32, 123 (1989).  https://doi.org/10.1007/BF01039666(ISSN 00338443)ADSCrossRefGoogle Scholar
  20. 20.
    G.V. Belokopytov, V.N. Semenenko, V.A. Chistyaev, Radiophys. Quantum Electron. 32, 709 (1989).  https://doi.org/10.1007/BF01060002 (ISSN 00338443)ADSCrossRefGoogle Scholar
  21. 21.
    G.V. Belokopytov, Ferroelectrics 167, 137 (1995).  https://doi.org/10.1080/00150199508232306 (ISSN 00150193)CrossRefGoogle Scholar
  22. 22.
    L.G. Gassanov, S.V. Koshevaya, T.N. Narytnik, M.Yu. Omel’yanenko, Izv. VUZ Radioelektron. (English transl Radioelectron. Commun. Syst.) 21(10), 56 (1978)Google Scholar
  23. 23.
    G.N. Burlak, N.Ya. Kotsarenko, S.V. Koshevaya, Sov. Phys. J. 24, 732 (1981).  https://doi.org/10.1007/BF00941343 (ISSN 00385697)CrossRefGoogle Scholar
  24. 24.
    K. Kamarás, K.L. Barth, F. Keilmann, R. Henn, M. Reedyk, C. Thomsen, M. Cardona, J. Kircher, P.L. Richards, J.L. Stehle, J. Appl. Phys. 78, 1235 (1995).  https://doi.org/10.1063/1.360364 ADSCrossRefGoogle Scholar
  25. 25.
    A. Zamudio-Lara, S.V. Koshevaya, V.V. Grimalsky, F. Yañez-Cortes, Radioelectron. Commun. Syst. 58, 411 (2015).  https://doi.org/10.3103/S0735272715090034 CrossRefGoogle Scholar
  26. 26.
    L.G. Gassanov, S.V. Koshevaya, M.Yu. Omel’yanenko, Radiotekhika Elektron (English transl Radio Eng Electron Phys) 25, 1238 (1980)Google Scholar
  27. 27.
    S.V. Koshevaya, M.V. Kononov, M.Yu. Omel’yanenko, Izv. VUZ Radioelektron. (English transl Radioelectron. Commun. Syst.) 28(3), 53 (1985)ADSGoogle Scholar
  28. 28.
    Yu.G. Rapoport, V.V. Grimalsky, S.V. Koshevaya, D.L. Melendez-Isidoro, Modulation Instability of Terahertz Electromagnetic Pulses in SrTiO 3 Paraelectric. Proceedings of the IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO), vol 128, Kyiv, 21–23 April 2015 (2015).  https://doi.org/10.1109/ELNANO.2015.7146851
  29. 29.
    K.M. Rabe, C.H. Ahn, J.-M. Triscone (eds.), Physics of Ferroelectrics. A Modern Perspective (Springer, New York, 2007)Google Scholar
  30. 30.
    M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectric and Related Materials (Clarendon Press, Oxford, 1977)Google Scholar
  31. 31.
    B.A. Strukov, A.P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, New York, 1998)CrossRefGoogle Scholar
  32. 32.
    M.I. Rabinovich, D.I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems (Kluwer, Dordrecht, 1989)CrossRefGoogle Scholar
  33. 33.
    E. Picholle, C. Montes, IEEE J. Sel. Top. Quantum Electron. 9, 74 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    N. Bloembergen, Nonlinear Optics (W.A.Benjamin, Inc., New York, 1965)zbMATHGoogle Scholar
  35. 35.
    J. Weiland, H. Wilhelmsson, Coherent Non-Linear Interaction of Waves in Plasmas (Pergamon Press, London, 1977)Google Scholar
  36. 36.
    A.P. Sukhorukov, Nonlinear Wave Interactions in Optics and Radiophysics (Nauka Publishing, Moscow, 1988) (in Russian)Google Scholar
  37. 37.
    I. Velchev, D. Neshev, W. Hogervorst, W. Ubachs, IEEE J. Quant. Electron. 35, 3812 (1999)CrossRefGoogle Scholar
  38. 38.
    A.A. Samarskii, Theory of Difference Schemes (Marcel Dekker, New York, 2001)CrossRefGoogle Scholar
  39. 39.
    L.M. Gorbunov, Sov. Phys. Tech. Phys. 22, 19 (1977)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CIICAp, IICBAAutonomous University of State Morelos (UAEM)CuernavacaMexico

Personalised recommendations