Applied Physics B

, 125:12 | Cite as

On-chip hybrid demultiplexer for mode and coarse wavelength division multiplexing

  • Yuyang Zhuang
  • Heming ChenEmail author
  • Ke Ji
  • Yuchen Hu


We propose a hybrid demultiplexer for mode and coarse wavelength division multiplexing on silicon-on-insulator (SOI) nanowires and photonic crystal (PhC) slab. First, a V-shape waveguide–cavity–waveguide filter based on PhC slab is presented. Coupling of resonant modes is introduced to the filter to suppress the crosstalk caused by connection with nanowires. Then, we cascade and optimize the filter to compose a coarse wavelength division demultiplexer. After that, a hybrid demultiplexer is constructed by combining the coarse wavelength division demultiplexer on PhC slab and mode division demultiplexer on SOI nanowires. The parameters of the hybrid demultiplexer are calculated using three-dimensional finite-difference time-domain (3D-FDTD) method. The numerical results show that the fundamental transverse electric (\(\hbox {TE}_0\)) modes and the first-order TE (\(\hbox {TE}_1\)) modes of 1530 nm and 1550 nm can be demultiplexed. The insertion loss is smaller than 2.0 dB, and the channel crosstalk is less than − 25 dB. The hybrid demultiplexer can be applied in a system that using mode and coarse wavelength division multiplexing simultaneously.



This work is supported in part by the National Natural Science Foundation of China (No. 61571237), in part by the Natural Science Foundation of Jiangsu Province of China (No. BK20151509), and in part by Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. \(\mathrm{KYZZ16}_{-}0251\), No. \(\mathrm{KYLX15}_{-}0835\)).


  1. 1.
    Z. Feng, L. Xu, Q. Wu, M. Tang, S. Fu, W. Tong, P. Shum, D. Liu, Opt. Express 25, 5951–5961 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    C. Castro, S. Jain, E.D. Man, Y. Jung, J. Hayes, S. Calabrò, K. Pulverer, M. Bohn, S. Alam, D.J. Richardson, K. Takenaga, T. Mizuno, Y. Miyamoto, T. Morioka, W. Rosenkranz, J. Lightwave Technol. 36, 349–354 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    R.G.H.V. Uden, R.A. Correa, E.A. Lopez, F.M. Huijskens, C. Xia, G. Li, A. Schülzgen, H.D. Waardt, A.M.J. Koonen, C.M. Okokwo, Nat. Photon. 8, 865–870 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    L. Grüner-Nielsen, Y. Sun, J.W. Nicholson, D. Jakobsen, K.G. Jespersen, R.L. Jr, B. Pálsdóttir, J. Lightwave Technol. 30, 3693–3698 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    H. Ahmad, K.Z. Hamdam, F.D. Muhammad, S.W. Harun, M.Z. Zulkifli, Appl. Phys. B 118, 269–274 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M.S. Dahlem, C.W. Holzwarth, A. Khilo, F.X. Kärtner, H.I. Smith, E.P. Ippen, Opt. Express 19, 306–316 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Takahashi, T. Asano, D. Yamashita, S. Noda, Opt. Express 22, 4692–4698 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    C. Kuo, C. Chang, M. Chen, S. Chen, Y. Wu, Opt. Express 15, 198–206 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    M. Chen, G. Cao, L. Yang, Y. Tong, J. Yao, Appl. Phys. B 123, 256 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, J. Lightwave Technol. 30, 2421–2426 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J.B. Driscoll, R.R. Grote, B. Souhan, J.I. Dadap, M. Lu, R.M. Osgood, Opt. Lett. 38, 1854–1856 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, J. Yang, Opt. Lett. 41, 2851–2854 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    D. Dai, J. Wang, Y. Shi, Opt. Lett. 38, 1422–1424 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Le, Z. Wang, Z. Li, Y. Li, Q. Li, C. Cui, C. Wu, Opt. Commun. 406, 173–176 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    T. Mulugeta, M. Rasras, Opt. Express 23, 943–949 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    J. Wang, S. Chen, D. Dai, Opt. Lett. 39, 6993–6996 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Tan, H. Wu, S. Wang, C. Li, D. Dai, Opt. Lett. 43, 1962–1965 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    K. Ji, H. Chen, Y. Zhuang, W. Zhou, J. Mod. Opt. (2018).
  19. 19.
    W. Zhou, Y. Zhuang, K. Ji, H. Chen, Opt. Express 23, 24770–24784 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    B.S. Song, T. Asano, Y. Akahane, Y. Tanaka, S. Noda, J. Lightwave Technol. 23, 1449–1455 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, Opt. Express 14, 12394–12400 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, Opt. Express 13, 4202–4209 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    H. Ren, C. Jiang, W. Hu, M. Gao, J. Wang, Opt. Express 14(23), 2446–2458 (2006)Google Scholar
  24. 24.
    Y. Akahane, T. Asano, B.S. Song, S. Noda, Nature 425, 944–947 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A. Talneau, M. Agio, C.M. Soukoulis, M. Mulot, S. Anand, Ph Lalanne, Opt. Lett. 29, 1745–1747 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    J. Wang, Y. Xuan, M. Qi, H. Huang, Y. Li, M. Li, X. Chen, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, F. Gan, Opt. Lett. 40, 1956–1959 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuyang Zhuang
    • 1
    • 2
  • Heming Chen
    • 3
    Email author
  • Ke Ji
    • 1
    • 2
  • Yuchen Hu
    • 1
    • 2
  1. 1.Department of Electronic and Optical EngineeringNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Department of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingChina
  3. 3.Bell Honors SchoolNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations