Advertisement

Applied Physics B

, 125:18 | Cite as

High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers

  • Simone Borri
  • Giacomo Insero
  • Gabriele Santambrogio
  • Davide Mazzotti
  • Francesco Cappelli
  • Iacopo Galli
  • Gianluca Galzerano
  • Marco Marangoni
  • Paolo Laporta
  • Valentina Di Sarno
  • Luigi Santamaria
  • Pasquale Maddaloni
  • Paolo De Natale
Article
  • 132 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

Quantum cascade lasers (QCLs) are becoming a key tool in several advanced experiments in the field of precision molecular spectroscopy and absolute frequency metrology. In view of this, a thorough control of their emission properties must be achieved, including a narrow linewidth as well as a high frequency-stability combined with referencing to a primary standard. Here, we give a review on recent developments and next perspectives in this scope, with particular regard to the use of QCLs in fundamental physics spectroscopic searches.

References

  1. 1.
    G. Gabrielse, The standard model’s greatest triumph. Phys. Today 66, 64 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    S. Truppe, R. Hendricks, S. Tokunaga, H. Lewandowski, M. Kozlov, C. Henkel, E. Hinds, M. Tarbutt, A search for varying fundamental constants using hertz-level frequency measurements of cold CH molecules. Nat. Commun. 4, 2600 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    D. DeMille, J.M. Doyle, A.O. Sushkov, Probing the frontiers of particle physics with tabletop-scale experiments. Science 357, 990 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    A. Shelkovnikov, R.J. Butcher, C. Chardonnet, A. Amy-Klein, Stability of the proton-to-electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    E.J. Salumbides, J.C.J. Koelemeij, J. Komasa, K. Pachucki, K.S.E. Eikema, W. Ubachs, Bounds on fifth forces from precision measurements on molecules. Phys. Rev. D 87, 112008 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J.E. van den Berg, S.C. Mathavan, C. Meinema, J. Nauta, T.H. Nijbroek, K. Jungmann, H.L. Bethlem, S. Hoekstra, Traveling-wave deceleration of SrF molecules. J. Mol. Spectrosc. 300, 22 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Vitiello, G. Scalari, B. Williams, P.D. Natale, Quantum cascade lasers: 20 years of challenges. Opt. Express 23, 5167 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Q.T. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razeghi, 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98, 181106 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi, Terahertz semiconductor-heterostructure laser. Nature 417, 6885 (2002)CrossRefGoogle Scholar
  11. 11.
    J.M. Wolf, S. Riedi, M.J. Süess, M. Beck, J. Faist, 3.36 \(\upmu\)m single-mode quantum cascade laser with a dissipation below 250 mW. Opt. Express 24, 662 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    A. Hugi, G. Villares, S. Blaser, H.C. Liu, J. Faist, Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, P.D. Natale, Frequency stability characterization of a quantum cascade laser frequency comb. Laser Photonics Rev. 10, 623 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    K. Ohtani, D. Turcinkova, C. Bonzon, I.-C. Benea-Chelmus, M. Beck, J. Faist, M. Justen, U.U. Graf, M. Mertens, J. Stutzki, High performance 4.7 THz GaAs quantum cascade lasers based on four quantum wells. N. J. Phys. 18, 123,004 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Tymchenko, J.S. Gomez-Diaz, J. Lee, M.A. Belkin, A. Alú, Highly-efficient THz generation using nonlinear plasmonic metasurfaces. J. Opt. 19, 104001 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    L. Consolino, S. Jung, A. Campa, M.D. Regis, S. Pal, J.H. Kim, K. Fujita, A. Ito, M. Hitaka, S. Bartalini, P.D. Natale, M.A. Belkin, M.S. Vitiello, Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation. Sci. Adv. 9, e1603317 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    M. Rösch, M. Beck, M.J. Süess, D. Bachmann, K. Unterrainer, J. Faist, G. Scalari, Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation. Nanophotonics 7, 237 (2018)CrossRefGoogle Scholar
  18. 18.
    R.M. Williams, J.F. Kelly, J.S. Hartman, S.W. Sharpe, M.S. Taubman, J.L. Hall, F. Capasso, C. Gmachl, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers. Opt. Lett. 24, 1844 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    T.L. Myers, R.M. Williams, M.S. Taubman, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Free-running frequency stability of mid-infrared quantum cascade lasers. Opt. Lett. 27, 170 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    F. Rana, P. Mayer, R.J. Ram, Scaling of the photon noise in semiconductor cascade lasers. J. Opt. B Quantum Semiclass. Opt. 6, S771 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons. IEEE J. Quantum Electron. 44, 12 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow–Townes limit. Phys. Rev. Lett. 104, 083904 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Opt. Express 19, 17996 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    V.L. Kasyutich, P.A. Martin, Measurements of the linewidth of a continuous-wave distributed feedback quantum cascade laser. Opt. Commun. 284, 5723 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, P. Thomann, Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver. Appl. Phys. B 109, 407 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M.C. Cardilli, M. Dabbicco, F.P. Mezzapesa, G. Scamarcio, Linewidth measurement of mid infrared quantum cascade laser by optical feedback interferometry. Appl. Phys. Lett. 108, 031105 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    X.-G. Wang, F. Grillot, C. Wang, Rate equation modeling of the frequency noise and the intrinsic spectral linewidth in quantum cascade lasers. Opt. Express 26, 2325 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, Frequency-noise dynamics of mid-infrared quantum cascade lasers. IEEE J. Quantum Electron. 47, 984 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    L. Tombez, J.D. Francesco, S. Schilt, G.D. Domenico, J. Faist, P. Thomann, D. Hofstetter, Frequency noise of free-running 4.6 \(\upmu\)m distributed feedback quantum cascade lasers near room temperature. Opt. Lett. 36, 3109 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    F. Mezzapesa, L.L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M.S. Vitiello, H.E. Beere, D.A. Ritchie, G. Scamarcio, Intrinsic stability of quantum cascade lasers against optical feedback. Opt. Express 21, 13748 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    L. Tombez, S. Schilt, D. Hofstetter, T. Südmeyer, Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference. Opt. Lett. 38, 5079 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    I. Sergachev, R. Maulini, A. Bismuto, S. Blaser, T. Gresch, Y. Bidaux, A. Müller, S. Schilt, T. Südmeyer, All-electrical frequency noise reduction and linewidth narrowing in quantum cascade lasers. Opt. Lett. 39, 6411 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, P. De Natale, Quantum cascade lasers for high-resolution spectroscopy. Opt. Eng. 49, 111122 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio, D. Mazzotti, A. Montori, N. Akikusa, M. Yamanishi, S. Bartalini, P. De Natale, Subkilohertz linewidth room-temperature mid-IR quantum cascade laser using a molecular sub-Doppler reference. Opt. Lett. 37, 4811 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    M.S. Taubman, T.L. Myers, D.B. Cannon, R.M. Williams, F. Capasso, C. Gmachl, D.L. Sivco, A.Y. Cho, Frequency stabilization of quantum cascade lasers by use of optical cavities. Opt. Lett. 27, 2164 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    E. Fasci, N. Coluccelli, M. Cassinerio, A. Gambetta, L. Hilico, L. Gianfrani, P. Laporta, A. Castrillo, G. Galzerano, Narrow-linewidth quantum cascade laser at 8.6 \(\upmu\)m. Opt. Lett. 39, 4946 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, P. De Natale, Microcavity-stabilized quantum cascade laser. Laser Photonics Rev. 10, 153 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    S. Borri, M. Siciliani de Cumis, G. Insero, S. Bartalini, P. Cancio, D. Mazzotti, I. Galli, G. Giusfredi, G. Santambrogio, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, P. De Natale, Tunable microcavity-stabilized quantum cascade laser for mid-IR high-resolution spectroscopy and sensing. Sensors 16, 238 (2016)CrossRefGoogle Scholar
  39. 39.
    P.L.T. Sow, S. Mejri, S.K. Tokunaga, O. Lopez, A. Goncharov, B. Argence, C. Chardonnet, A. Amy-Klein, C. Daussy, B. Darquié, A widely tunable 10-\(\upmu\)m quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy. Appl. Phys. Lett. 104, 264101 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    M.G. Hansen, E. Magoulakis, Q.-F. Chen, I. Ernsting, S. Schiller, Quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and \(1\times 10^{-13}\)-level frequency instability. Opt. Lett. 40, 2289 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    M.S. Taubman, T.L. Myers, B.D. Cannon, R.M. Williams, Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared. Spectrochim. Acta Part A 60, 3457 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    F. Bielsa, A. Douillet, T. Valenzuela, J.P. Karr, L. Hilico, Narrow-line phase-locked quantum cascade laser in the 9.2 \(\upmu\)m range. Opt. Lett. 32, 1641 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, L. Gianfrani, Frequency-comb-referenced quantum-cascade laser at 4.4 \(\upmu\)m. Opt. Lett. 32, 988 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    J. Jost, J. Hall, J. Ye, Continuously tunable, precise, single frequency optical signal generator. Opt. Express 10, 515 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    T. Schibli, K. Minoshima, F. Hong, H. Inaba, Y. Bitou, A. Onae, H. Matsumoto, Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb. Opt. Lett. 30, 2323 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    T. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Absolute optical frequency measurement of the cesium D\(_1\) line with a mode-locked laser. Phys. Rev. Lett. 82, 3568 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, T.W. Hänsch, Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    S.A. Diddams, D.J. Jones, L.S. Ma, S.T. Cundiff, J.L. Hall, Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb. Opt. Lett. 25, 186 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    S. Cundiff, J. Ye, J. Hall, Rulers of light. Sci. Am. 298, 74 (2008)CrossRefGoogle Scholar
  51. 51.
    T. Udem, R. Holzwarth, T. Hänsch, Femtosecond optical frequency combs. Eur. Phys. J. Spec. Top. 172, 69 (2009)CrossRefGoogle Scholar
  52. 52.
    P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Gagliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, P. De Natale, Frequency-comb-referenced mid-IR sources for next-generation environmental sensors. Appl. Phys. B 102, 255 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    H.R. Telle, B. Lipphardt, J. Stenger, Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B 74, 1–6 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Ultra-stable, widely tunable and absolutely linked mid-IR coherent source. Opt. Express 17, 9582 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    S. Borri, S. Bartalini, I. Galli, P. Cancio, G. Giusfredi, D. Mazzotti, A. Castrillo, L. Gianfrani, P. De Natale, Lamb-dip-locked quantum cascade laser for comb-referenced IR absolute frequency measurements. Opt. Express 16, 11637 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb. Opt. Express 19, 17520 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, Comb-assisted spectroscopy of CO\(_2\) absorption profiles in the near- and mid-infrared regions. Appl. Phys. B 109, 385 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    A. Gambetta, D. Gatti, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, Mid-infrared quantitative spectroscopy by comb-referencing of a quantum-cascade-laser: application to the CO\(_2\) spectrum at 4.3 \(\upmu\)m. Appl. Phys. Lett. 99, 251107 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    A. Castrillo, A. Gambetta, D. Gatti, G.G.P. Laporta, M. Marangoni, L. Gianfrani, Absolute molecular density determinations by direct referencing of a quantum cascade laser to an optical frequency comb. Appl. Phys. B 110, 155 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    M. Lamperti, B. AlSaif, D. Gatti, M. Fermann, P. Laporta, A. Farooq, M. Marangoni, Absolute spectroscopy near 7.8 \(\upmu\)m with a comb-locked extended-cavity quantum-cascade-laser. Sci. Rep. 8, 1292 (2018)ADSCrossRefGoogle Scholar
  61. 61.
    K. Knabe, P.A. Williams, F.R. Giorgetta, C.M. Armacost, S. Crivello, M.B. Radunsky, N.R. Newbury, Frequency characterization of a swept- and fixed-wavelength external-cavity quantum cascade laser by use of a frequency comb. Opt. Express 20, 12432 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    A.A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, M. Marangoni, Coherent phase lock of a 9 \(\upmu\)m quantum cascade laser to a 2 \(\upmu\)m thulium optical frequency comb. Opt. Lett. 37, 4083 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    I. Galli, M. Siciliani de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, P. De Natale, Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy. Appl. Phys. Lett. 102, 121117 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    I. Galli, S. Bartalini, P.C. Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, P.D. Natale, Absolute frequency measurements of CO\(_2\) transitions at 4.3 \(\upmu\)m with a comb-referenced quantum cascade laser. Mol. Phys. 111, 2041 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    A. Gambetta, N. Coluccelli, M. Cassinerio, T.T. Fernandez, D. Gatti, A. Castrillo, A. Ceausu-Velcescu, E. Fasci, L. Gianfrani, L. Santamaria, V.D. Sarno, P. Maddaloni, P.D. Natale, P. Laporta, G. Galzerano, Frequency-comb-assisted precision laser spectroscopy of CHF\(_3\) around 8.6 \(\upmu\)m. J. Chem. Phys. 143, 234202 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    A. Gambetta, E. Vicentini, Y. Wang, N. Coluccelli, E. Fasci, L. Gianfrani, A. Castrillo, V.D. Sarno, L. Santamaria, P. Maddaloni, P.D. Natale, P. Laporta, G. Galzerano, Absolute frequency measurements of CHF\(_3\) Doppler-free ro-vibrational transitions at 8.6 \(\upmu\)m. Opt. Lett. 42, 1911 (2017)ADSCrossRefGoogle Scholar
  67. 67.
    B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, A. Amy-Klein, Quantum cascade laser frequency stabilisation at the sub-Hz level. Nat. Photonics 9, 456 (2015)ADSCrossRefGoogle Scholar
  68. 68.
    G. Insero, S. Borri, D. Calonico, P. Cancio, C. Clivati, D. D’Ambrosio, P. De Natale, M. Inguscio, F. Levi, G. Santambrogio, Measuring molecular frequencies in the 1–10 \(\upmu\)m range at 11-digits accuracy. Sci. Rep. 7, 12780 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, P. De Natale, Direct link of a mid-infrared QCL to a frequency comb by optical injection. Opt. Lett. 37, 1011 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    G. Giusfredi, I. Galli, P. Cancio, D. Mazzotti, P.D. Natale, Apparatus and method for measuring the concentration of trace gases by SCAR spectroscopy. PCT Application WO/2014/170828 (2014)Google Scholar
  71. 71.
    P. Cancio, P.D. Natale, I. Galli, G. Giusfredi, D. Mazzotti, Apparato per la misura di concentrazione di gas in tracce mediante la spettroscopia SCAR. Italian patent 0001417063 (2014)Google Scholar
  72. 72.
    G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, P. De Natale, Saturated-absorption cavity ring-down spectroscopy. Phys. Rev. Lett. 104, 110801 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5\(\upmu\)m. Opt. Lett. 35, 3616 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107, 270802 (2011)CrossRefGoogle Scholar
  75. 75.
    I. Galli, P. Cancio, G. Di Lonardo, L. Fusina, G. Giusfredi, D. Mazzotti, F. Tamassia, P. De Natale, The \(\nu _3\) band of \(^{14}\)C\(^{16}\)O\(_2\) molecule measured by optical-frequency-comb-assisted cavity ring-down spectroscopy [Invited article]. Mol. Phys. 109, 2267 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    I. Galli, S. Bartalini, R. Ballerini, M. Barucci, P. Cancio, M. De Pas, G. Giusfredi, D. Mazzotti, N. Akikusa, P. De Natale, Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 3, 385 (2016)CrossRefGoogle Scholar
  77. 77.
    G. Scoles, Atomic and Molecular Beam Methods (Oxford University Press, Oxford, 1988)Google Scholar
  78. 78.
    P.B. Davies, P.A. Martin, Diode-laser spectroscopy of a\(^3{\varPi }\) CO. Mol. Phys. 70, 89 (1990)ADSCrossRefGoogle Scholar
  79. 79.
    S.K. Tokunaga, R.J. Hendricks, M.R. Tarbutt, B. Darquié, High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules. N. J. Phys. 19, 053006 (2017)CrossRefGoogle Scholar
  80. 80.
    K. Knabe, P.A. Williams, F.R. Giorgetta, M.B. Radunsky, C.M. Armacost, S. Crivello, N.R. Newbury, Absolute spectroscopy of N\(_2\)O near, frequency-swept quantum cascade laser spectrometer 4.5 \(\upmu\)m with a comb-calibrated. Opt. Express 21, 1020 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    B. AlSaif, M. Lamperti, D. Gatti, P. Laporta, M. Fermann, A. Farooq, O. Lyulin, A. Campargue, M. Marangoni, High accuracy line positions of the \(\nu _1\) fundamental band of \(^{14}\)N\(_2^{16}\)O. J. Quant. Spectrosc. Radiat. Transf. 211, 172–178 (2018). (submitted) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Simone Borri
    • 1
    • 2
  • Giacomo Insero
    • 1
    • 3
  • Gabriele Santambrogio
    • 1
    • 4
  • Davide Mazzotti
    • 1
  • Francesco Cappelli
    • 1
  • Iacopo Galli
    • 1
  • Gianluca Galzerano
    • 5
    • 6
  • Marco Marangoni
    • 5
    • 6
  • Paolo Laporta
    • 5
    • 6
  • Valentina Di Sarno
    • 7
    • 8
  • Luigi Santamaria
    • 7
    • 9
  • Pasquale Maddaloni
    • 7
    • 8
  • Paolo De Natale
    • 1
    • 2
  1. 1.CNR-INO, Istituto Nazionale di OtticaSesto FiorentinoItaly
  2. 2.INFN, Istituto Nazionale di Fisica Nucleare, Sez. di FirenzeSesto FiorentinoItaly
  3. 3.Joint Research Centre-EU Science HubEggenstein-LeopoldshafenGermany
  4. 4.INRIM, Istituto Nazionale di Ricerca MetrologicaTurinItaly
  5. 5.CNR-IFN, Istituto di Fotonica e NanotecnologieMilanItaly
  6. 6.Dipartimento di Fisica-Politecnico di MilanoMilanItaly
  7. 7.CNR-INO, Istituto Nazionale di OtticaPozzuoliItaly
  8. 8.INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Napoli, Complesso Universitario di M.S. AngeloNaplesItaly
  9. 9.Agenzia Spaziale Italiana, Centro di Geodesia SpazialeMateraItaly

Personalised recommendations