Advertisement

Applied Physics B

, 125:1 | Cite as

Ag2S quantum dots in the fields of picosecond and femtosecond UV and IR pulses: optical limiting, nonlinear absorption and refraction properties

  • Yue Fu
  • Rashid A. Ganeev
  • Chen Zhao
  • Konda Srinivasa Rao
  • Sandeep Kumar Maurya
  • Weili Yu
  • Ke Zhang
  • Chunlei Guo
Article
  • 41 Downloads

Abstract

We demonstrate strong optical nonlinearities of silver sulfide (Ag2S) quantum dots (QDs) in the ultraviolet range. The 4-nm Ag2S QDs were prepared by chemical method and analyzed using picosecond (800 nm and 400 nm, 200 ps) and femtosecond (800 nm and 400 nm, 60 fs) laser pulses. Our Z-scan measurements show that these QDs have large nonlinear absorption coefficient (~ 10−3 cm W−1) at 400 nm. We also demonstrate the transient absorption and optical limiting in Ag2S QDs. Variations of the signs of nonlinear refractive indices and nonlinear absorption coefficients of QDs are demonstrated by changing pulse width and wavelength of probe radiation.

Notes

Acknowledgements

R.A.G. thanks the financial support from Chinese Academy of Sciences President’s International Fellowship Initiative (Grant no. 2018VSA0001).

Funding

National Natural Science Foundation of China (Grant nos. 91750205, 61774155); National Key Research and Development Program of China (2017YFB1104700).

References

  1. 1.
    P. Işık, A. Karatay, H. Gul Yaglioglu, A. Elmali, U. Kürüm, A. Ateş, N. Gasanly, Opt. Commun. 288, 107 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    I.L. Bolotin, D.J. Asunskis, A.M. Jawaid, Y. Liu, P.T. Snee, L. Hanley, J. Phys. Chem. C 114, 16257 (2010)CrossRefGoogle Scholar
  3. 3.
    Q. Li, C. Liu, L. Zang, Q. Gong, X. Yu, C. Cao, J. Opt. Soc. Am. B 25, 1978 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    X. Liu, Y. Adachi, Y. Tomita, J. Oshima, T. Nakashima, T. Kawai, Opt. Express 20, 13457 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Science 310, 462 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    V.L. Colvin, M.C. Schlamp, A.P. Allvisatos, Nature 370, 354 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    S. Abe, J.J. Joos, L.I.D.J. Martin, Z. Hens, P.F. Smet, Light Sci. Appl. 6, e16271 (2017)CrossRefGoogle Scholar
  8. 8.
    V.M.N. Tessler, M. Kazes, S. Kan, U. Banin, Science 295, 3 (2002)CrossRefGoogle Scholar
  9. 9.
    D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P.L. McEuen, Nature 389, 3 (1997)CrossRefGoogle Scholar
  10. 10.
    D.V. Talapin, C.B. Murray, Science 310, 86 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Zhang, Z. You, D. Chu, Light Sci. Appl. 3, e213 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    W.C. Chan, S. Nie, Science 281, 2016 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    M. Bruches Jr., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    R.A. Ganeev, A.I. Ryasnyansky, T. Usmannov, Opt. Quantum Electron. 35, 211 (2003)CrossRefGoogle Scholar
  15. 15.
    G.S. Boltaev, B. Sobirov, S. Reyimbaev, H. Sherniyozov, T. Usmanov, M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, T.S. Kondratenko, H.S. Shihaliev, R.A. Ganeev, Appl. Phys. A 122, 999 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    L.W. Liu, S.Y. Hu, Y.P. Dou, T.H. Liu, J.Q. Lin, Y. Wang, Beilstein J. Nanotechnol. 6, 1781 (2015)CrossRefGoogle Scholar
  17. 17.
    P. Kumbhakar, M. Chattopadhyay, A.K. Mitra, Int. J. Nanosci. 10, 177 (2011)CrossRefGoogle Scholar
  18. 18.
    Z. Zeng, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, J. Appl. Phys. 114, 023510 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    H. Linnenbank, Y. Grynko, J. Förstner, S. Linden, Light Sci. Appl. 5, e16013 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    L. Gao, C. Chen, K. Zeng, C. Ge, D. Yang, H. Song, J. Tang, Light Sci. Appl. 5, e16126 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    O.V. Ovchinnikov, M.S. Smirnov, A.S. Perepelitsa, T.S. Shatskikh, B.I. Shapiro, Quantum Electron. 45, 1143 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Y.P. Sun, J.E. Riggs, K.B. Henbest, R.B. Martin, J. Opt. Soc. Am. B 9, 481 (2000)Google Scholar
  23. 23.
    R.B. Matin, M.J. Meziani, P. Pathak, J.E. Riggs, D.E. Cook, S. Perera, Y.-P. Sun, Opt. Mater. 29, 788 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    R. Karimzadeh, H. Aleali, N. Mansour, Opt. Commun. 284, 2370 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, Z. Li, J. Appl. Phys. 109, 023102 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    H. Zeng, Y. Yang, X. Jiang, G. Chen, J. Qiu, F. Gan, J. Cryst. Growth 280, 516 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    R.A. Ganeev, G.S. Boltaev, R.I. Tugushev, T. Usmanov, Appl. Phys. B 100, 571 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    R.A. Ganeev, A.I. Ryasnyansky, A.T. Stepanov, T. Usmanov, Opt. Quantum Electron. 36, 949 (2004)CrossRefGoogle Scholar
  30. 30.
    R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Appl. Phys. 103, 063102 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    A. Sahu, L. Qi, M.S. Kang, D. Deng, D.J. Norris, J. Am. Chem. Soc. 133, 6509 (2011)CrossRefGoogle Scholar
  32. 32.
    H. Aleali, N. Mansour, M. Mirzaie, Eng. Technol. Int. J. Phys. Math. Sci. 8, 1274 (2014)Google Scholar
  33. 33.
    H. Aleali, N. Mansour, Optik 127, 2485 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    W.J. Mir, A. Swarnkar, R. Sharma, A. Katti, K.V. Adarsh, A. Nag, J. Phys. Chem. Lett. 6, 3915 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Sun, W. Yu, A. Usman, T.T. Isimjan, S. Dgobbo, E. Alarousu, K. Takanabe, O.F. Mohammed, J. Phys. Chem. Lett. 5, 659–665 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Sheik-Bahae, D. Hutchings, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 27, 1296–1309 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    J. Etchepare, G. Grillon, J.P. Chambaret, G. Hamoniaux, A. Orszag, Opt. Commun. 63, 329–335 (1987)ADSCrossRefGoogle Scholar
  38. 38.
    T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, M. Ueda, Opt. Commun. 160, 125 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    R.A. Ganeev, A.I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, Appl. Phys. B 78, 433 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    L. Jing, S.V. Kershaw, Y. Li, X. Huang, Y. Li, A.L. Rogach, M. Gao, Chem. Rev. 116, 10623 (2016)CrossRefGoogle Scholar
  41. 41.
    F. Nan, F.-M. Xie, S. Liang, L. Ma, D.-J. Yang, X.-L. Liu, J.-H. Wang, Z.-Q. Cheng, X.-F. Yu, L. Zhou, Q.-Q. Wang, J. Zeng, Nanoscale 8, 11969 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations