Applied Physics B

, 124:220 | Cite as

RETRACTE ARTICLE: Mode-competition phenomena among longitudinal modes in semiconductor lasers under the effect of external optical feedback

  • Sazzad M. S. ImranEmail author
  • Nahid Hassan
  • Silvia Rahman
  • Mostasim Billah Meshuk


Comprehensive theoretical investigation of the influence of external optical feedback on the dynamics of semiconductor lasers are introduced. The analyses are based on numerical simulation of the multimode rate equations superposed by Langevin noise sources that are generated in such a way as to keep the correlation of the modal photon number with the injected electron number. The gain saturation effect which causes mode-competition phenomena among longitudinal modes are considered in our multimode rate equation model. The dynamics of modes and the characteristics of the output spectrum are investigated for strong external optical feedback strength. Numerically simulated results show that the mode-competition phenomena induce quasi-periodic hopping among several longitudinal modes which reveals multimode-like output spectra in lasers. This mode-hopping phenomena is described in terms of asymmetric gain saturation effect.


  1. 1.
    M. Yamada, K. Hayano, H. Ishiguro, Y. Suematsu, An approximate analysis of gain suppression in injection lasers for band-to-band and band-to-impurity-level transitions. Jpn. J. Appl. Phys. 18, 1531–1541 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    M. Yamada, H. Nagato, Analysis of longitudinal mode behavior around the threshold level in undoped injection lasers. Trans. Inst. Electron. Commun. Eng. Japan E64, 770–777 (1981)Google Scholar
  3. 3.
    M. Yamada, Transverse and longitudinal mode control in semiconductor injection lasers. IEEE J. Quantum Electron. QE-19, 1365–1380 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    M. Nakamura, K. Aiki, N. Chinone, R. Ito, J. Umeda, Longitudinal-mode behaviors of mode-stabilized Al Ga As injection lasers. J. Appl. Phys. 49, 4644–4648 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    M. Yamada, Y. Suematsu, A condition of single longitudinal mode operation in injection lasers with index-guiding structure. IEEE J. Quantum Electron. QE-15, 743–749 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    M. Yamada, Y. Suematsu, Analysis of gain suppression in undoped injection lasers. J. Appl. Phys. 52, 2653–2664 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    J. Buus, Single Frequency Semiconductor Lasers (SPIE, Bellingham, WA, 1991)Google Scholar
  8. 8.
    T.P. Lee, C.A. Burrus, J.A. Copeland, A.G. Dentai, D. Marcuse, Short-cavity InGaAsP injection lasers: Dependence of mode-spectra and single-longitudinal mode power on cavity length. IEEE J. Quantum Electron. QE-18, 1101–1113 (1982)ADSGoogle Scholar
  9. 9.
    I. Mito, M. Kitamura, K. Kaede, Y. Odagiri, M. Seki, M. Sugimoto, K. Kobayashi, InGaAsP planar heterostructure laser diode (PBH-LD) with very low threshold current. Electron. Lett. 18, 2–3 (1982)CrossRefGoogle Scholar
  10. 10.
    S. Ogita, A.J. Lowery, R.S. Tucker, Influence of asymmetric nonlinear gain on the transient of longitudinal modes in long wavelength Fabry–Perot laser diodes. IEEE J. Quantum Electron. 33, 198–210 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    M. Ahmed, M. Yamada, Influence of instantaneous mode competition on the dynamics of semiconductor lasers. IEEE J. Quantum Electron. 38, 682–693 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    M. Yamada, W. Ishimori, H. Sakaguchi, M. Ahmed, Time-dependent measurement of the mode-competition phenomena among longitudinal modes in long-wavelength lasers. IEEE J. Quantum Electron. 39(12), 1548–1554 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    M. Yamada, Theory of mode competition noise in semiconductor lasers. IEEE J. Quantum Electron. QE-22, 1052–1059 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    G. Gray, R. Roy, Noise in nearly-single-mode semiconductor lasers. Phys. Rev. A 40, 2453–2461 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    M. Alalusi, R.B. Darling, Effect of nonlinear gain on mode-hopping in semiconductor laser diodes. IEEE J. Quantum Electron. 31, 1181–1192 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    G.P. Agrawal, Effect of gain nonlinearites on periodic doubling and chaos in directly modulated semiconductor lasers. Appl. Phys. Lett. 49, 1013–1015 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    M. Yamada, N. Nakaya, M. Funaki, Characteristics of mode-hopping noise and its suppression with the help of electric negative feedback in semiconductor lasers. IEEE J. Quantum Electron. QE-23, 1297–1302 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    G.P. Agrawal, G.R. Gray, Effect of phase-conjugate feedback on the noise characteristics of semiconductor lasers. Phys. Rev. A 46, 5890–5898 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    G.R. Gray, D. Haung, G.P. Agrawal, Chaotic dynamics of semiconductor lasers with phase-conjugate feedback. Phys. Rev. A 47, 2096–2105 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    M. Yamada, Computer simulation of feedback induced noise in semiconductor lasers operating with self-sustained pulsation. IEICE Trans. E81-C, 768–780 (1998)Google Scholar
  21. 21.
    M. Ahmed, M. Yamada, S. Abdulrhmann, A multimode simulation model of mode-competition low-frequency noise in semiconductor lasers. Fluct. Noise Lett. 1, L163–L170 (2001)CrossRefGoogle Scholar
  22. 22.
    R. Lang, K. Kobayashi, External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. QE-16(3), 347–355 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    S.M.S. Imran, Numerical analysis of optical feedback noise and its reduction in semiconductor lasers, Doctoral Dissertation, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan (2013)Google Scholar
  24. 24.
    M. Yamada, Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers. J. Appl. Phys. 66(1), 81–89 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    N. Schunk, K. Petermann, Noise analysis of injection-locked semiconductor injection lasers. IEEE J. Quantum Electron. QE-22, 642–650 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    D. Lenstra, M. Yousefi, Rate-equation model for multi-mode semiconductor lasers with spatial hole burning. Optics Express, 22(7), 8143–8149 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sazzad M. S. Imran
    • 1
    Email author
  • Nahid Hassan
    • 1
  • Silvia Rahman
    • 1
  • Mostasim Billah Meshuk
    • 1
  1. 1.Dept. of Electrical and Electronic EngineeringUniversity of DhakaDhakaBangladesh

Personalised recommendations