Advertisement

Applied Physics B

, 124:208 | Cite as

All fiber-optic viscosity, density, and temperature measurements of liquids using a photothermally actuated cantilever

  • Annica I. Freytag
  • Amy G. MacLean
  • Mahtab Abtahi
  • Jack A. Barnes
  • Hans-Peter LoockEmail author
Article
  • 136 Downloads

Abstract

An all-fiber-optical method is presented to monitor densities, viscosities, and temperatures of Newtonian liquids. The actuation is performed by photothermally heating the base of a steel cantilever with an intensity-modulated 808 nm diode laser. The cantilever vibrations are measured with an in-fiber Fabry–Pérot cavity sensor attached along the length of the cantilever. When immersed in a viscous fluid, the cantilever response can be related to the fluid properties: a shift in the resonance frequency corresponds to a change in fluid density, and the width of the resonance peak gives information on the dynamic viscosity after calibration of the system. Aqueous glycerol and sucrose samples in the density range of 0.997–1.17 g cm−3 and in the viscosity range of 0.89–8.49 mPa s were used to investigate the limits of the sensor. Representative beverage samples were also analyzed as unknowns.

Notes

Acknowledgements

The authors gratefully acknowledge financial support by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

  1. 1.
    S. Gupta, Viscometry for Liquids. (Springer, Berlin, 2014)Google Scholar
  2. 2.
    A.F. Payam, W. Trewby, K. Voitchovsky, Simultaneous viscosity and density measurement of small volumes of liquid using a vibrating microcantilever. Analyst 142, 1492–1498 (2017)ADSGoogle Scholar
  3. 3.
    N. McLoughlin, S.L. Lee, G. Hahner, Simultaneous determination of density and viscosity of liquids based on resonance curves of uncalibrated cantilevers. Appl. Phys. Lett. 89, 184106 (2006)ADSGoogle Scholar
  4. 4.
    C. Vancura, I. Dufour, S.M. Heinrich, F. Josse, A. Hierlemann, Analysis of resonating microcantilevers operating in a viscous liquid environment. Sens. Actuators A 141, 43–51 (2008)Google Scholar
  5. 5.
    M. Youssry, N. Belmiloud, B. Caillard, C. Ayela, C. Pellet, I. Dufour, A straightforward determination of fluid viscosity and density using microcantilevers: from experimental data to analytical expressions. Sens. Actuators A 172, 40–46 (2011)Google Scholar
  6. 6.
    W.Y. Shih, X. Li, H. Gu, W.-H. Shih, I.A. Aksay, Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J. Appl. Phys. 89(2), 1497–1505 (2001)ADSGoogle Scholar
  7. 7.
    M. Hennemeyer, S. Burghardt, R.W. Stark, Cantilever micro-rheometer for the characterization of sugar solutions. Sensors 8, 10–22 (2008)Google Scholar
  8. 8.
    C. Riesch, E.K. Reichel, F. Keplinger, B. Jakoby, Characterizing vibrating cantilevers for liquid viscosity and density sensing. J. Sens. 2008, 1–9 (2008)Google Scholar
  9. 9.
    B.A. Bircher et al., Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators. Anal. Chem. 85, 8676–8683 (2013)Google Scholar
  10. 10.
    B.A. Bircher, R. Krenger, T. Braun, Automated high-throughput viscosity and density sensor using nanomechanical resonators. Sens. Actuators B 223, 784–790 (2016)Google Scholar
  11. 11.
    A.G. Maclean, L.T. Schneider, A.I. Freytag, A. Gribble, J.A. Barnes, H.-P. Loock, Cavity-enhanced photoacoustic detection using acoustic and fiber-optic resonators. Appl. Phys. B 119(1), 11–19 (2015)ADSGoogle Scholar
  12. 12.
    S. Avino et al, Musical instrument pickup based on a laser locked to an optical fiber resonator. Opt. Express 19(25), 25057–25065 (2011)ADSGoogle Scholar
  13. 13.
    J. Barnes, S. Li, A. Goyal, P. Abolmaesumi, P. Mousavi, H-P. Loock, Broadband Vibration Detection in Tissue Phantoms Using a Fiber Fabry–Perot Cavity.  IEEE Trans. Biomed. Eng. 65(4), 921–927 (2018)Google Scholar
  14. 14.
    G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, Probing the ultimate limit of fiber-optic strain sensing. Science 330, 1081–1084, 2010ADSGoogle Scholar
  15. 15.
    M. Heinisch, T. Voglhuber-Brunnmaier, E.K. Reichel, I. Dufour, B. Jakoby, Reduced order models for resonant viscosity and mass density sensors. Sens. Actuators A 220, 76–84 (2014)Google Scholar
  16. 16.
    G.Y. Chen, R.J. Warmack, T. Thundat, D.P. Allison, A. Huang, Resonance response of scanning force microscopy cantilevers. Rev. Sci. Instrum. 65(8), 2532–2537 (1994)ADSGoogle Scholar
  17. 17.
    M. Heinisch, T. Voglhuber-Brunnmaier, E.K. Reichel, I. Dufour, B. Jakoby, Application of resonant steel tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements. Sens. Actuators A 226, 163–174 (2015)Google Scholar
  18. 18.
    A.R.P. Rau, Perspectives on the Fano resonance formula. Phys. Scr. 69(1), C10–C13 (2004)zbMATHGoogle Scholar
  19. 19.
    J.H. Lee, J.H. Yoo, S.Y. Yim, S.H. Park, Symmetric and asymmetric resonance characteristics of a tuning fork for shear-force detection. J. Korean Phys. Soc. 45(2), 455–459 (2004)Google Scholar
  20. 20.
    J. Gere, Mechanics of Materials, 6th edn. (Thomson-Engineering, Brooks, 2003)Google Scholar
  21. 21.
    E.Z. Volterra, Zachmanoglou, E.C., Dynamics of Vibrations, 1st edn. (Charles E. Merrill, Columbus, 1965)zbMATHGoogle Scholar
  22. 22.
    D. Ramos, J. Tamayo, J. Mertens, M. Calleja, Photothermal excitation of microcantilevers in liquids. J. Appl. Phys. 99(12), 124904 (2006)ADSGoogle Scholar
  23. 23.
    M. Vassalli, V. Pini, B. Tiribilli, Role of the driving laser position on atomic force microscopy cantilevers excited by photothermal and radiation pressure effects. Appl. Phys. Lett. 97(14), 143105 (2010)ADSGoogle Scholar
  24. 24.
    B.A. Bircher, L. Duempelmann, H.P. Lang, C. Gerber, T. Braun, Photothermal excitation of microcantilevers in liquid: effect of the excitation laser position on temperature and vibration amplitude. Micro Nano Lett. 8(11), 770–774 (2013)Google Scholar
  25. 25.
    A.I. Freytag, Fiber-Optic Vibration Sensing of Cantilevers Immersed in Fluids (Masters of Science, Chemistry, Queen’s University, Kingston, 2016)Google Scholar
  26. 26.
    J.F. Swindells, C.F. Snyder, R.C. Hardy, P.E. Golden, Viscosities of sucrose solutions at various temperatures: tables of recalculated values, in Supplement to National Bureau of Standards Circular 440 (1958). https://hdl.handle.net/2027/mdp.39015077295460. Accessed 9 Oct 2018
  27. 27.
    N.-S. Cheng, Formula for the viscosity of a glycerol–water mixture. Ind. Eng. Chem. Res. 47, 3285–3288 (2008)Google Scholar
  28. 28.
    A. Volk, C.J. Kähler, Density model for aqueous glycerol solutions. Exp. Fluids 59(5), 75 (2018)Google Scholar
  29. 29.
    C. Westbrook. Calculation of density and viscosity of glycerol/water mixtures. (2018). http://www.met.reading.ac.uk/~sws04cdw/viscosity_calc.html. Accessed 9 Oct 2018
  30. 30.
    G. Adamovsky et al, Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings. Opt. Commun. 285, 766–773 (2012)ADSGoogle Scholar
  31. 31.
    O.K. Bates, Thermal conductivity of liquids. Ind. Eng. Chem. 28(4), 494–498 (1936)Google Scholar
  32. 32.
    M. Werner, A. Baars, F. Werner, C. Eder, A. Delgado, Thermal conductivity of aqueous sugar solutions under high pressure. Int. J. Thermophys. 28, 1161–1180 (2007)ADSGoogle Scholar
  33. 33.
    E.Z. Chong, Zak, S.H., An Introduction to Optimization, 2nd edn. (Wiley, New York, 2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations