Advertisement

Applied Physics B

, 124:207 | Cite as

Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system

  • Xun Wang
  • Zheng Duan
  • Mikkel Brydegaard
  • Sune Svanberg
  • Guangyu Zhao
Article
  • 43 Downloads

Abstract

We have developed a compact hyperspectral lidar system based on a continuous-wave (CW) 445 nm diode laser and a double Scheimpflug imaging arrangement. The light-weight construction allows the integration of the system on a commercial drone. Airborne, range-resolved spatial imaging of vegetation fluorescence is demonstrated.

Notes

Acknowledgements

The authors gratefully acknowledge the continuing support from Professors Sailing He and Guofu Zhou. We are also very grateful to Ying Li, Ying Li, and Jinlei Wang for assistance in the measurements and Klas Rydhmer, Alfred Strand, and Mikael Ljungholm for contributions in the early work on hyperspectral Scheimpflug systems. This work was supported by the Guangdong Province Innovation Research Team Program (2010001D0104799318), the National Science Foundation of China (61705069), the Chinese Ministry of Science and Technology through the National Key Research and Development Program of China (2018YFC1407503), and by Spectraray Inc.

References

  1. 1.
    Y.C. Xie, Z.Y. Sha, M. Yu, Remote sensing imagery in vegetation mapping: a review. J. Plant Ecol. 1, 9 (2008)CrossRefGoogle Scholar
  2. 2.
    D. Blondeau-Patissier, J.F. Gower, A.G. Dekker, S.R. Phinn, V.E. Brando, A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 123, 123 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    H.K. Lichtenthaler, U. Rinderle, The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem. 19, S29 (1988)CrossRefGoogle Scholar
  4. 4.
    E.H. Murchie, T. Lawson, Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983–3998 (2013)CrossRefGoogle Scholar
  5. 5.
    I. Moya, A new instrument for passive remote sensing. 1. Measurements of sunlight induced fluorescence. Remote Sens. Environ. 91, 196 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    M. Meroni, M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, J. Moreno, Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sens. Environ. 113, 2037 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    U. Rascher, L. Alonso, A. Burkart, C. Cilia, S. Cogliati, R. Colombo, A. Damm, M. Drusch, L. Guanter, J. Hanus, Sun-induced fluorescence—a new probe of photosynthesis: first maps from the imaging spectrometer HyPlant. Glob. Change Biol. 21, 4673–4684 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    K. Guan, J.A. Berry, Y. Zhang, J. Joiner, L. Guanter, G. Badgley, D.B. Lobell, Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Glob. Change Biol. 22, 716–726 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    L. Guanter, Y. Zhang, M. Jung, J. Joiner, M. Voigt, J.A. Berry, C. Frankenberg, A.R. Huete, P. Zarco-Tejada, J.-E. Lee, Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. 111, E1327–E1333 (2014)CrossRefGoogle Scholar
  10. 10.
    C. Frankenberg et al., New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J. Joiner, L. Guanter, R. Lindstrot, M. Voigt, A.P. Vasilkov, E.M. Middleton, K.F. Huemmrich, Y. Yoshida, C. Frankenberg, Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013)CrossRefGoogle Scholar
  12. 12.
    ESA, Report for mission selection, FLEX, ESA SP-1330/2, European Space Agency, Noordwiik, The Netherlands (2015)Google Scholar
  13. 13.
    S. Svanberg, Fluorescence lidar monitoring of vegetation status. Phys. Scr. T58, 79 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    S. Svanberg, Fluorescence spectroscopy and imaging of lidar targets, Chap. 7, in Laser Remote Sensing, ed. by T. Fujii, T. Fukuchi (CRC Press, Boca Raton, 2005), pp. 433–467CrossRefGoogle Scholar
  15. 15.
    G.Y. Zhao, Z. Duan, L. Ming, Y.Y. Li, R.P. Chen, J.D. Hu, S. Svanberg, Y.L. Han, Reflectance and fluorescence characterization of maize species using laboratory measurements and lidar remote sensing. Appl. Opt. 55, 5273 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Duan, T. Peng, S.M. Zhu, M. Lian, Y.Y. Li, W. Fu, J.B. Xiong, S. Svanberg, Q.Z. Zhao, J.D. Hu, G.Y. Zhao, Optical characterization of Chinese hybrid rice using laser-induced fluorescence techniques—laboratory and remote-sensing measurements. Appl. Opt. 57, 3481 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    G.A. Chapelle, L.A. Franks, D.A. Jessup, Aerial testing of a KrF laser-based fluorosensor. Appl. Opt. 22, 3382 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    V. Drozdowska, Seasonal and spatial variability of surface seawater fluorescence properties in the Baltic and Nordic Seas: results of lidar experiments. Oceanologia 49, 59–69 (2007)Google Scholar
  19. 19.
    J. Cuesta, P. Chazette, T. Allouis, P.H. Flamant, S. Durrieu, J. Sanak, P. Genau, D. Guyon, D. Loustau, C. Flamant, Observing the forest canopy with a new ultra-violet compact airborne lidar. Sensors (Basel) 10, 7386 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Ounis, J. Bach, A. Mahjoub, F. Daumard, I. Moya, Y. Goulas, A new airborne lidar for remote sensing of canopy fluorescence and vertical profile, in EPJ Web of Conferences (2016), p. 25019CrossRefGoogle Scholar
  21. 21.
    M.A. Lefsky, W.B. Cohen, G.G. Parker, D.J. Harding, Lidar remote sensing for ecosystem studies: lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. Bioscience 52, 19 (2002)CrossRefGoogle Scholar
  22. 22.
    M.A. Wulder, J.C. White, R.F. Nelson, E. Næsset, H.O. Ørka, N.C. Coops, T. Hilker, C.W. Bater, T. Gobakken, Lidar sampling for large-area forest characterization: a review. Remote Sens. Environ. 121, 196 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Maltamo, E. Næsset, J. Vauhkonen, Forestry applications of airborne laser scanning, concepts and case studies. Manag. Ecosyst. 27, 2014 (2014)Google Scholar
  24. 24.
    H. Churnside, Review of profiling oceanographic lidar. Opt. Eng. 53, 051405 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    L. Tang, G.F. Shao, Drone remote sensing for forestry research and practices. J. For. Res. 26, 791 (2015)CrossRefGoogle Scholar
  26. 26.
    K. Whitehead, C.H. Hugenholtz, Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges. J. Unmanned Veh. Syst. 2, 69 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Nakamura, Background story of the invention of efficient InGaN blue-light-emitting diodes (Nobel lecture). Angew. Chem. Int. Ed. 54, 7770–7788 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Brydegaard, A. Merdasa, A. Gebru, H. Jayaweera, S. Svanberg, Realistic instrumentation platform for active and passive optical remote sensing. Appl. Spectrosc. 70, 372 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    M. Brydegaard, A. Gebru, S. Svanberg, Super resolution laser radar with blinking atmospheric particles—application to interacting flying insects. Prog. Electromagn. Res. 147, 141 (2014)CrossRefGoogle Scholar
  30. 30.
    E. Malmqvist, S. Jansson, S. Torok, M. Brydegaard, Effective parameterization of laser radar observations of atmospheric fauna. IEEE J. Select. Top. Quantum Electron. 22, 327 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    S.M. Zhu, E. Malmqvist, W.S. Li, S. Jansson, Y.Y. Li, Z. Duan, K. Svanberg, H.Q. Feng, Z.W. Song, G.Y. Zhao, M. Brydegaard, S. Svanberg, Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system. Appl. Phys. B 123, 211 (2017).  https://doi.org/10.1007/s00340-017-6784-x ADSCrossRefGoogle Scholar
  32. 32.
    G.Y. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.A. Hansson, S. Svanberg, M. Brydegaard, Inelastic hyperspectral lidar for profiling aquatic ecosystems. Lasers Photonics Rev. (2016).  https://doi.org/10.1002/lpor.201600093 CrossRefGoogle Scholar
  33. 33.
    G. Zhao, E. Malmqvist, K. Rydhmer, A. Strand, G. Bianco, L.-A. Hansson, S. Svanberg, M. Brydegaard, Inelastic hyperspectral lidar for aquatic monitoring and landscape plant scanning test, ILRC28. Bucharest 176, 1003 (2017)Google Scholar
  34. 34.
    J. Erdkamp, J. Marriage, Theodor Scheimpflug—the life and work of the man who gave us that rule. Photographica World 3, 29–38 (2012)Google Scholar
  35. 35.
    S. Svanberg, LIDAR, in Springer Handbook of Lasers and Optics, 2nd edn. ed. by F. Träger (Springer, Heidelberg, 2012), p. 1146Google Scholar
  36. 36.
    E. Malmqvist, M. Brydegaard, M. Aldén, J. Bood, Scheimpflug lidar for combustion diagnostics. Opt. Express 26, 14842 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    L. Mei, M. Brydegaard, Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system. Opt. Express 23, A1613–A1628 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Török, G. Zhao, The Scheimpflug lidar method, in Proceedings of SPIE, vol. 10406 (2017)Google Scholar
  39. 39.
    J.M. Romero, G.B. Cordon, M.G. Lagorio, Modeling re-absorption of fluorescence from the leaf to the canopy level. Remote Sens. Environ. 204, 138–146 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    H. Edner, J. Johansson, S. Svanberg, E. Wallinder, G. Cecchi, L. Pantani, Fluorescence lidar monitoring of the Arno river, EARSEL. Adv. Remote Sens. 1, 42 (1992)ADSGoogle Scholar
  41. 41.
    A.J. Lawaetz, C.A. Stedmon, Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc. 63, 936–940 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xun Wang
    • 1
  • Zheng Duan
    • 1
  • Mikkel Brydegaard
    • 2
  • Sune Svanberg
    • 1
    • 2
  • Guangyu Zhao
    • 1
  1. 1.Center for Optical and Electromagnetic Research, South China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhouChina
  2. 2.Department of PhysicsLund UniversityLundSweden

Personalised recommendations