Advertisement

Applied Physics B

, 124:216 | Cite as

Optical trapping and controllable targeted delivery of nanoparticles by a nanofiber ring

  • Ying LiEmail author
  • Yanjun Hu
Article
  • 169 Downloads

Abstract

The stable manipulation and position-designated delivery of nanoparticles has shown potential application in targeted drug delivery and enhanced detection of viruses. In this paper, we demonstrate optical trapping and controllable targeted delivery of 700 nm diameter particles using a nanofiber ring. Based on 3D FDTD simulations, the bending loss for bent nanofibers was calculated at different fiber diameters, bending radio, and laser wavelengths. Therefore, according to the theoretical analysis, the 500 nm diameter nanofiber and 808 nm wavelength laser light were chosen. The experimental results indicate that, by directing a laser beam with a wavelength of 808 nm into a nanofiber ring, nanoparticles were trapped and transported along the ring, and released into the water at a designated position because of bending loss. The release position of particles was controllable by the input optical power.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 11404069).

Supplementary material

Supplementary material 1 (MOV 690 KB)

References

  1. 1.
    H.B. Xin, Y.C. Li, B.J. Li, Adv. Funct. Mater. 25, 2816 (2015)CrossRefGoogle Scholar
  2. 2.
    H.B. Xin, B.J. Li, Light Sci. Appl. 3, e205 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    L.H. Zhao, Y.D. Li, J.W. Qi, J.J. Xu, Q. Sun, Opt. Express 18, 5724 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    H. Cai, A.W. Poon, Opt. Lett. 35, 2855 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    F.M. Fazal, S.M. Block, Nat. Photonics 5, 318 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    G. Carmon, M. Feingold, Opt. Lett. 36, 40 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    T.L. Min, P.J. Mears, L.M. Chubiz, C.V. Rao, I. Golding, Y.R. Chemla, Nat. Methods 6, 831 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, B.J. Li, Laser Photonics Rev. 7, 289 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    L.L. Xu, Y. Li, B.J. Li, New J. Phys. 14, 033020 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Schmidt, A.H.J. Yang, D. Erickson, M. Lipson, Opt. Express 15, 14322 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    K. Grujic, O.G. Helleso, J.P. Hole, J.S. Wilkinson, Opt. Express 13, 1 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    G. Brambilla, G.S. Murugan, J.S. Wilkinson, D.J. Richardson, Opt. Lett. 32, 3041 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    H.X. Xu, Y. Lei, Zhang, B.J. Li, Opt. Express 20, 1930 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information EngineeringGuangdong Medical UniversityDongguanChina

Personalised recommendations