Applied Physics B

, 124:205 | Cite as

Nonlinear optical studies of sodium borate glasses embedded with gold nanoparticles

  • Jagannath Gangareddy
  • Eraiah BheemaiahEmail author
  • Vinitha Gandhiraj
  • Jaimson T. James
  • Jephin K. Jose
  • Krishnakanth Katturi Naga
  • Venugopal Rao Soma


Optical glasses possessing large third-order optical nonlinear susceptibility and fast response times are promising materials for the development of advanced nonlinear photonic devices. In this context, gold nanoparticle (NP)-doped borate glasses were synthesized via the melt-quench method. The nonlinear optical (NLO) properties of thus prepared glasses were investigated at different wavelengths (i.e., at 532 nm using nanosecond pulses, at 750 nm, 800 nm, and 850 nm wavelengths using femtosecond, MHz pulses). At 532 nm, open aperture (OA) Z-scan signatures of gold NP-doped borate glasses demonstrated reverse saturable absorption (RSA), attributed to mixed intra-band and interband transitions, while in the 750‒850 nm region, the OA Z-scan data revealed the presence of saturable absorption (SA), possibly due to intra-band transitions. The NLO coefficients were evaluated at all the spectral regions and further compared with some of the recently reported glasses. The magnitudes of obtained NLO coefficients clearly demonstrate that the investigated glasses are potential materials for photonic device applications.



One of the authors (GJ) is grateful to Dr. Rajan V Anavekar, former Professor, Department of Physics, Bangalore University, Bangalore, for useful discussions and valuable suggestions. The authors thank Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Bombay, India for providing HR-TEM experimental facility. S. V. Rao thanks DRDO, India for financial support through ACRHEM. GJ would like to thank Dr. Promod Kumar, Department of Physics, University of the Free state, Bloemfontein, South Africa for useful inputs given to measure the particle size using Mie theory.


  1. 1.
    C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, W. Li, Appl. Phys. B Lasers Opt. 124, 17 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    H. Fares, H. Elhouichet, B. Gelloz, M. Ferid, J. Appl. Phys. 117, 1 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Jain, A. Issa, R.V. Anavekar, R. Böhmer, O. Kanert, R. Kuchler, Appl. Phys. Lett. 95, 1 (2009)CrossRefGoogle Scholar
  4. 4.
    X. Zhang, W. Luo, L.J. Wang, W. Jiang, J. Mater. Chem. C 2, 6966 (2014)CrossRefGoogle Scholar
  5. 5.
    G. Jagannath, B. Eraiah, K. NagaKrishnakanth, S. Venugopal Rao, J. Non-Cryst. Solids 482, 160 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    C. Feng, M. Liu, Y. Li, X. Gao, Z. Kang, G. Qin, Z. Jia, X. Tao, T. Song, Y. Dun, F. Bai, P. Li, Q. Wang, J. Fang, Appl. Phys. B Lasers Opt. 123, 81 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Xu, Q. Guo, C. Liu, Z. Ma, X. Liu, J. Qiu, Appl. Phys. B Lasers Opt. 122, 259 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    H.H. Mai, V.E. Kaydashev, V.K. Tikhomirov, E. Janssens, M.V. Shestakov, M. Meledina, S. Turner, G.V. Tendeloo, V.V. Moshchalkov, P. Lievens, J. Phys. Chem. C 118, 15995 (2014)CrossRefGoogle Scholar
  9. 9.
    M.B. Roberge, S.H. Santagneli, S.H. Messaddeq, M. Rioux, Y. Ledemi, H. Eckert, Y. Messaddeq, J. Phys. Chem. C 121, 13823 (2017)CrossRefGoogle Scholar
  10. 10.
    M.M. Hivrekar, D.B. Sable, M.B. Solunke, K.M. Jadhav, J. Non-Cryst. Spldis 474, 58 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    D. Manzani, J.M.P. Almeida, M. Napoli, L.D. Boni, M. Nalin, C.R.M. Afonso, S.J.L. Ribeiro, C.R. Mendonça, Plasmonics 8, 1667 (2013)CrossRefGoogle Scholar
  12. 12.
    T.R. Oliveira, E.L.F. Filho, C.B.D. Araujo, D.S.D. Silva, L.R.P. Kassab, D.M.D. Silva, J. Appl. Phys. 114, 1 (2013)CrossRefGoogle Scholar
  13. 13.
    R.F. Souza, M.A.R.C. Alencar, J.M. Hickmann, R. Kobayashi, L.R.P. Kassab, Appl. Phys. Lett. 89, 1 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, K. Hirao, Opt. Commun. 224, 321 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    R. Schneider, R. Schneider, E.A.D. Campos, J.B.S. Mendes, J.F. Felix, P.A.S. Cruz, RSC Adv. 7, 41479 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Qiu, M. Shirai, T. Nakaya, J. Si, X. Jiang, C. Zhu, K. Hirao, Appl. Phys. Lett. 8, 3040 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Kobayashi, M.A.C. Duarte, L.M.L. Marzan, Langmuir 17, 6375 (2001)CrossRefGoogle Scholar
  18. 18.
    C. Mohr, M. Dubiel, H. Hofmeister, J. Phys. Condens. Matter 13, 525 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    D.F. Franco, A.C. Santana, L.F.C.D. Oliveira, M.A.P. Silva, J. Mater. Chem. C 3, 3803 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Rajaramakrishna, S. Karuthedath, R.V. Anavekar, H. Jain, J. Non–Cryst. Solids 358, 1667 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. Zhong, W. Xiang, H. Zhao, W. Zhao, G. Chen, X. Liang, J. Alloys Compd. 537, 269 (2012)CrossRefGoogle Scholar
  22. 22.
    J.M.P. Almeida, D.S. da Silva, L.R.P. Kassab, S.C. Zilio, C.R. Mendonça, L. De Boni, Opt. Mater. 36, 829 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W.V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    J. Sasai, K. Hirao, J. Appl. Phys. 89, 4548 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 1087 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    S. Ju, P.R. Watekar, S.G. Kang, J.K. Chung, C.J. Kim, W.T. Han, J. Non-Cryst. Solids 356, 2578 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    S.K. Ghoshal, A. Awang, M.R. Sahar, R. Arifin, J. Lumin. 159, 265 (2015)CrossRefGoogle Scholar
  28. 28.
    G. Mie, Ann. Phys. 330, 377 (1908)CrossRefGoogle Scholar
  29. 29.
    P. Kumar, M.C. Mathpal, A.K. Tripathi, J. Prakash, A. Agarwal, M.M. Ahmad, H.C. Swart, Phys. Chem. Chem. Phys. 17, 8596 (2015)CrossRefGoogle Scholar
  30. 30.
    D. Gall, J. Appl. Phys. 119, 1 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Som, B. Karmakar, J. Opt. Soc. Am. B 26, 21 (2009)CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, J. Zhang, Y. Jin, J. Zhang, G. Hu, S. Lin, R. Yuan, X. Liang, W. Xiang, J. Mater. Sci. Mater. Electron. 28, 1 (2017)Google Scholar
  33. 33.
    D. Rativa, R.E.D. Araujo, C.B.D. Araujo, A.S.L. Gomes, L.R.P. Kassab, Appl. Phys. Lett. 90, 1 (2007)CrossRefGoogle Scholar
  34. 34.
    B. Shanmugavelu, V.V.R.K. Kumar, R. Kuladeep, D.N. Rao, J. Appl. Phys. 114, 1 (2013)CrossRefGoogle Scholar
  35. 35.
    G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, J. Qiu, J. Non–Cryst. Solids 357, 2312 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    R.L. Sutherland, Handbook of nonlinear optics, 2nd edn. (Marcel Dekker, New York, 2003)CrossRefGoogle Scholar
  37. 37.
    S.B. Kolavekar, N.H. Ayachit, G. Jagannath, K. NagaKrishnakanth, S. Venugopal Rao, Opt. Mater. 83, 34 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    I. Papagiannouli, P. Aloukos, D. Rioux, M. Meunier, S. Couris, J. Phys. Chem. C 119, 6861 (2015)CrossRefGoogle Scholar
  39. 39.
    F. Chen, T. Xu, S. Dai, Q. Nie, X. Shen, X. Wang, B. Song, J. Non-Cryst. Solids 256, 2786 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    A. Ajami, W. Husinsky, B. Svecova, S. Vytykacova, P. Nekvindova, J. Non-Cryst. Solids 426, 159 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    B. Ghosh, P. Chakraborty, S. Mohapatra, P. Ann Kurian, C. Vijayan, P.C. Deshmukh, P. Mazzoldi, Mater. Lett. 61, 4512 (2007)CrossRefGoogle Scholar
  42. 42.
    R. Philip, P. Chantharasupawong, H. Qian, R. Jin, J. Thomas, Nano Lett. 12, 4661 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, K. Hirao, Opt. Lett. 21, 1637 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    B.L. Yu, A.B. Bykov, T. Qiu, P.P. Ho, R.R. Alfano, N. Borrelli, Opt.Commun. 215, 407 (2003)sADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBangalore UniversityBengaluruIndia
  2. 2.Division of Physics, School of Advanced SciencesVIT ChennaiChennaiIndia
  3. 3.Department of PhysicsChrist UniversityBengaluruIndia
  4. 4.Advanced Centre of Research in High Energy Materials (ACRHEM)University of HyderabadHyderabadIndia

Personalised recommendations