Advertisement

Applied Physics B

, 124:198 | Cite as

Wavelength-tunable, dual-wavelength Q-switched Ho3+-doped ZBLAN fiber laser at 1.2 µm

  • Xuezong Yang
  • Lei Zhang
  • Xiushan Zhu
  • Yan Feng
Article
  • 64 Downloads

Abstract

Wavelength-flexible Q-switched Ho3+-doped ZBLAN fiber laser at 1.2 µm is experimentally investigated for the first time. The gain medium is Ho3+-doped ZBLAN fiber, which is pumped by a 1137-nm Raman fiber laser. Nonlinear polarization rotation technique works as the saturable absorber in the ring cavity to provide the intensity modulation. An artificial Lyot filter is inserted into the cavity and its periodic transmission spectrum varied with the polarization allows for the tunability and multi-wavelength operation of the laser. As a result, the laser spectrum tunable from 1190 to 1196 nm and dual-wavelength Q-switched pulses are observed. At a pump power of 2.01 W, stable Q-switched pulse train with the pulse duration of 0.76 µs and pulse energy of 0.62 µJ is achieved.

Notes

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (61378026) and Technology Research Initiative Fund (TRIF) Photonics Initiative of University of Arizona.

References

  1. 1.
    H.M. Pask, R.J. Carman, D.C. Hanna, A.C. Tropper, C.J. Mackechnie, P.R. Barber, J.M. Dawes, IEEE J. Sel. Top. Quant. 1, 2–13 (1995)CrossRefGoogle Scholar
  2. 2.
    I.A. Bufetov, E.M. Dianov, Laser Phys. Lett. 6, 487 (2009)CrossRefGoogle Scholar
  3. 3.
    L. Zhang, H. Jiang, X. Yang, W. Pan, Y. Feng, Opt. Lett. 41, 215–218 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    X. Yang, L. Zhang, S. Cui, T. Fan, J. Dong, Y. Feng, Opt. Lett. 42, 4351–4354 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    X. Zhu, J. Zong, A. Miller, K. Wiersma, R.A. Norwood, N.S. Prasad, A. Chavez-Pirson, N. Peyghambarian, Opt. Lett. 37, 4185–4187 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    X. Zhu, J. Zong, R.A. Norwood, A. Chavez-Person, N. Peyghambarian, N. Prasad, in Proceedings of SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications, 823727 (2012)Google Scholar
  7. 7.
    X. Yang, L. Zhang, Y. Feng, X. Zhu, R.A. Norwood, N. Peyghambarian, J. Lightwave Technol. 34, 4266–4270 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    J. Wang, X. Zhu, Y. Ma, Y. Wang, M. Tong, S. Fu, J. Zong, K. Wiersma, A. Chavez-Pirson, R.A. Norwood, W. Shi, N. Peyghambarian, IEEE J. Sel. Top. Quant. 24, 1–5 (2018)Google Scholar
  9. 9.
    S. Liu, X. Zhu, G. Zhu, K. Balakrishnan, J. Zong, K. Wiersma, A. Chavez-Pirson, R.A. Norwood, N. Peyghambarian, Opt. Lett. 40, 147–150 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Wang, X. Zhu, C. Sheng, L. Li, Q. Chen, J. Zong, K. Wiersma, A. Chavez-Pirson, R.A. Norwood, N. Peyghambarian, IEEE Photonic Technol. Lett. 29, 743–746 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    N. Photonics, U.S. Patent 6,705,771, 16 Mar 2004Google Scholar
  12. 12.
    K. Özgören, F. Ilday, Opt. Lett. 35, 1296–1298 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    R.M. Sova, K. Chang-Seok, J.U. Kang, IEEE Photonic Technol. Lett. 14, 287–289 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuezong Yang
    • 1
    • 2
  • Lei Zhang
    • 1
  • Xiushan Zhu
    • 3
  • Yan Feng
    • 1
  1. 1.Shanghai Institute of Optics and Fine MechanicsChinese Academy of Sciences, Shanghai Key Laboratory of Solid State Laser and ApplicationJiadingChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.College of Optical SciencesThe University of ArizonaTucsonUSA

Personalised recommendations