Applied Physics B

, 124:202 | Cite as

Investigation of aerosol phosphor thermometry (APT) measurement biases for Eu:BAM

  • Dustin WitkowskiEmail author
  • David A. Rothamer


Aerosol phosphor thermometry (APT) utilizes the luminescence intensity ratio (LIR) of emission from two wavelength bands to infer temperature. This work characterizes the impacts of phosphor seeding concentration and laser fluence on the measured emission spectrum and resulting LIR vs. temperature calibration for the phosphor Eu:BAM in both a heated air jet and a tube furnace. Increasing seeding density led to spectral broadening, but this effect had a minimal impact on the LIR over the range investigated. Increasing laser fluence from 5 to 60 mJ/cm2 resulted in a blue shift in the emission spectrum, corresponding to an increase in the particle temperature of approximately 50 K inferred from the LIR, as previously observed in the literature. Heated jet measurements found that the temperature sensitivity of the LIR for Eu:BAM was not significantly affected by increasing laser fluence for the conditions studied. In contrast, the temperature sensitivity of the LIR measured in the tube furnace was significantly lower than in the jet, likely due to the high phosphor particle concentration present in the aggregate powder environment. These measurements highlight the importance of performing LIR calibrations at representative conditions to achieve unbiased APT measurements when relying on the spectral temperature-dependence of thermographic phosphors.



This work was funded in part by the National Science Foundation, award no. CBET-1148683.


  1. 1.
    C. Abram, B. Fond, A.L. Heyes, F. Beyrau, Applied Physics B. 111, 155 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Abram, B. Fond, F. Beyrau, Prog. Energy Combust. Sci. 64, 93 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Jordan, D.A. Rothamer, Energy 20000, 10000 (2012)Google Scholar
  4. 4.
    J. Jordan, D. Rothamer, Appl. Phys. B. 110, 285 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    N.J. Neal, J. Jordan, D. Rothamer, SAE Int. J. Engines 6, 300 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Omrane, P. Petersson, M. Aldén, M.A. Linne, Appl. Phys. B. 92, 99 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Omrane, G. Särner, M. Aldén, Appl. Phys. B. 79, 431 (2004)CrossRefGoogle Scholar
  8. 8.
    B. Fond, C. Abram, A.L. Heyes, A. Kempf, F. Beyrau, in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Lisbon, Portugal, 2012)Google Scholar
  9. 9.
    B. Fond, C. Abram, A.L. Heyes, A.M. Kempf, F. Beyrau, Opt. Express. 20, 22118 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Alden, A. Omrane, M. Richter, G. Sarner, Prog. Energy Combust. Sci. 37, 422 (2011)CrossRefGoogle Scholar
  11. 11.
    A.H. Khalid, K. Kontis, Sensors. 8, 5673 (2008)CrossRefGoogle Scholar
  12. 12.
    N. Fuhrmann, J. Brübach, A. Dreizler: Proc. Combust. Inst. 34, 3611 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Van Pieterson, R.T. Wegh, A. Meijerink, M.F. Reid: J. Chem. Phys. 115, 9382 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    G. Sarner, M. Richter, M. Alden, Meas. Sci. Technol. 19, 10 (2008)Google Scholar
  15. 15.
    S.W. Allison, G.T. Gillies, Rev. Sci. Instrum. 68, 2615 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Feist, A.L. Heyes: Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 214, 7 (2000)Google Scholar
  17. 17.
    D. Rothamer, J. Jordan, Appl. Phys. B. 106, 435 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    H. Lee, B. Böhm, A. Sadiki, A. Dreizler, Appl. Phys. B. 122, 1 (2016)Google Scholar
  19. 19.
    B. Fond, C. Abram, F. Beyrau, Appl. Phys. B. 121, 495 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J. Linden, N. Takada, B. Johansson, M. Richter, M. Alden, Appl. Phys. B Lasers Opt. 96, 237 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    J.P.J. van Lipzig, M. Yu, N.J. Dam, C.C.M. Luijten, L.P.H. de Goey, Appl. Phys. B 111, 469 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    M. Lawrence, H. Zhao, L. Ganippa, Opt. Express. 21, 12260 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    D. Witkowski, D.A. Rothamer, J. Lumin. 192, 1250 (2017)CrossRefGoogle Scholar
  24. 24.
    D. Witkowski, in Investigation of Thermographic Phosphors for Gas-Phase Temperature Measurements in Combustion Applications, The University of Wisconsin-Madison, 2017Google Scholar
  25. 25.
    W. Hergert, T. Wriedt: The Mie theory: basics and applications (Springer, Berlin, 2012)CrossRefGoogle Scholar
  26. 26.
    M.I. Mishchenko, J.W. Hovenier, L.D. Travis: Light scattering by nonspherical particles: theory, measurements, and applications (Academic Press, San Diego, 1999)Google Scholar
  27. 27.
    A. Mugnai, W.J. Wiscombe, Appl. Opt. 25, 1235 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21, 2077 (2009)CrossRefGoogle Scholar
  29. 29.
    K. Sakuma, N. Hirosaki, R.-J. Xie, J. Lumin. 126, 843 (2007)CrossRefGoogle Scholar
  30. 30.
    L.D. Merkle, Phys. Rev. B. 42, 3783 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    D.K. Sardar, L.B. Levy Jr., J. Appl. Phys. 79, 1759 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    J.K. Lawson, S.A. Payne, Phys. Rev. B. 47, 14003 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    C.W. Struck, W.H. Fonger, J. Lumin. 10, 1 (1975)CrossRefGoogle Scholar
  34. 34.
    G. Bizarri, B. Moine, J. Lumin. 113, 199 (2005)CrossRefGoogle Scholar
  35. 35.
    A. Rabhiou, A. Kempf, A. Heyes, Sens. Actuators B Chem. 177, 124 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations