Applied Physics B

, 124:197 | Cite as

PT-symmetric system based optical modulator

  • Fakhroddin NazariEmail author
  • Shahab Abdollahi


This paper introduces a novel approach based on linear parity-time (PT) symmetry for realization of an optical modulator. The suggested optical modulator is attained by embedding PT-symmetric couplers within the arms of a Mach–Zehnder interferometer configuration. The asymmetric evolution behavior of light propagation and interference effect play the key role in the proposed PT-symmetric based modulator. The extinction ratio of the proposed modulator is as high as 56.97 dB. Moreover, it is shown that the normalized light intensity of the modulator output exponentially varies by increasing the gain/loss coefficients. Finally, it is demonstrated that just by an active arm (the gain waveguide) of the PT-symmetric coupler, a similar evolution of the light propagation can be achieved along the modulator structure.



The authors wish to extend their appreciation to Iran National Science Foundation (INSF) for its support during this project.


  1. 1.
    G.T. Reed, G. Mashanovich, F.Y. Gardes, D.J. Thomson, Silicon optical modulators. Nat. Photon. 4, 518–526 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    B. Boyd, Nonlinear optics. Academic, San Diego (1992)Google Scholar
  3. 3.
    A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, 40 Gbit/s silicon optical modulator for high-speed applications. Electron. Lett. 43, 1196–1197 (2007)CrossRefGoogle Scholar
  6. 6.
    F.Y. Gardes, D.J. Thomson, N.G. Emerson, G.T. Reed, 40 Gb/s silicon photonics modulator for TE and TM polarizations. Opt. Express 19, 11804–11814 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgrad, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J. Thomson, F.Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B.P.P. Kuo, E. Myslivets, N. Alic, S. Radic, G.Z. Mashanovich, G.T. Reed, 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett. 24(4), 234–236 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M. Liu, X. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhang, B. Huang, Z. Zhang, C. Cheng, H. Chen, Bidirectional grating coupler based optical modulator for low-loss Integration and low-cost fiber packaging. Opt. Express 21, 14202–14214 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    X. Tu, T.Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.Q. Lo, 50-Gb/s silicon optical modulator with traveling wave electrodes. Opt. Express 21, 12776–12782 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    W. Li, B.G. Chen, C. Meng, W. Fang, Y. Xiao, X.Y. Li, Z.F. Hu, Y.X. Xu, L.M. Tong, H.Q. Wang, W.T. Liu, J.M. Bao, Y.R. Shen, Ultrafast all-optical graphene modulator. Nano Lett. 14, 955–959 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    V. Kartashov, A. Vysloukh, V. Konotop, L. Torner, Difraction control in pt-symmetric photonic lattices from beam rectification to dynamic localization. Phys. Rev. A 93, 013841 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    F. Dreisow, V. Kartashov, M. Heinrich, A. Vysloukh, A. Tunnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, Spatial light rectification in an optical waveguide lattice. Europhys. Lett. 101, 44002 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Ruschhaupt, F. Delgado, J.G. Muga, Physical realization of PT-symmetric potential scattering in a planar slab waveguide. J. Phys. A Math. Gen. 38, 171–176 (2005)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    K.G. Makris, R. El Ganainy, D.N. Christodoulides, Z.H. Musslimani, Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904–103908 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902–093906 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    C.E. Ruter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Feng, M. Ayache, J. Huang, Y.L. Xu, M.-H. Lu, Y.F. Chen, Y. Fainman, A. Scherer, Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729–733 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    X. Zhu, H. Ramezani, C. Shi, J. Zhu, X. Zhang, PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014)Google Scholar
  23. 23.
    C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y. Wang, X. Zhang, Accessing the exceptional points of parity-time symmetric acoustics. Nat Commun. 7, 11110 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    N. Bender, S. Factor, J.D. Bodyfelt, H. Ramezani, D.N. Christodoulides, F.M. Ellis, T. Kottos, Observation of asymmetric transport in structures with active nonlinearities. Phys. Rev. Lett. 110, 234101 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Konotop, J. Yang, D.A. Zezyulin, Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    L. Feng, Z.J. Wong, R.M. Ma, Y. Wang, X. Zhang, Single-mode laser by parity-time symmetry breaking. Science. 346, 972–975 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    H. Benisty, A. Degiron, A. Lupu, A.D. Lustrac, S. Chénais, S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, G. Lérondel, Implementation of PT symmetric devices using plasmonics: principle and applications. Opt. Express 19, 18004–18019 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    N. Lazarides, G.P. Tsironis, Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials. Phys. Rev. Lett. 110, 053901 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    F. Nazari, M. Nazari, M.K. Moravvej-Farshi, A 2 × 2 spatial optical switch based on PT-symmetry. Opt. Lett. 36, 4368–4370 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    B. Peng, S.K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G.L. Long, S. Fan, F. Nori, C.M. Bender, L. Yang, Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Nazari, N. Bender, H. Ramezani, M.K. Moravvej-Farshi, D.N. Christodoulides, T. Kottos, Optical isolation via PT-symmetric nonlinear Fano resonances. Opt. Exp. 22, 9574–9578 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    F. Nazari, M.K. Moravvej-Farshi, Multi-channel optical isolator based on nonlinear triangular parity time symmetric lattice. IEEE J. Quant. Electron. 52, 6100207 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Ramezani, Non-hermiticity-induced flat band. Phys. Rev. A 96, 011802 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    H. Ramezani, Y. Wang, E. Yablonovitch, X. Zhang, Unidirectional perfect absorber. IEEE J. Sel. Top. Quant. Electron. 22, 115–120 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    M. Ögren, F.K. Abdullaev, V.V. Konotop, Solitons in a PT-symmetric χ (2) coupler. Opt. Lett. 42, 4079–4082 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    M. Nazari, F. Nazari, M.K. Moravvej-Farshi, Dynamic behavior of spatial solitons propagating along Scarf II parity-time symmetric cells. J. Opt. Soc. Am. B 29, 3057–3062 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    F. Nazari, M. Nazari, M.K. Moravvej-Farshi, H. Ramezani, Asymmetric evolution of interacting solitons in parity-time symmetric cells. IEEE J. Quant. Electron. 49, 932–938 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    M. Marciniak, Light Propagation in optical waveguides with complex refractive indices. Opt. Appl. 26, 359–368 (1996)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Engineering Modern TechnologiesAmol University of Special Modern TechnologiesAmolIran
  2. 2.Faculty of EngineeringHadaf High Education InstituteSariIran

Personalised recommendations