Applied Physics B

, 124:195 | Cite as

RTP voltage-increased electro-optic Q-switched Ho:YAG laser with double anti-misalignment corner cubes

  • Y. P. Wang
  • Y. L. Ju
  • J. Wu
  • T. Y. DaiEmail author
  • B. Q. Yao


We describe a pulsed Ho:YAG laser with double anti-misalignment corner cubes that uses an RbTiOPO4 crystal as the electro-optic Q-switch. Two polarizers coated with high reflectivity coatings for the s-polarized light at the laser wavelength were employed to achieve linearly polarized laser output. The maximum s-polarized output power of 2.95 W at 2091.3 nm was obtained under the absorbed pump power of 12.9 W by increasing the voltage applied on RbTiOPO4 electro-optic crystal to 1000 V. The corresponding optical-to-optical conversion efficiency was 22.9% and the slope efficiency was 67.9%. For the Q-switched operation, the pulse energy of Ho:YAG laser was 7.8 mJ with a pulse width of 57 ns at the repetition rate of 100 Hz, resulting in a peak power of 136.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.33.



This work was supported by the National Natural Science Foundation of China (no. 61405047).


  1. 1.
    S.W. Henderson, P.J.M. Suni, C.P. Hale, M. Hannon, J.R. Magee, D.L. Bruns, E.H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    F. Gibert, D. Edouart, C. Cénac, F.L. Mounier, Appl. Phys. B 116, 967 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    R.M. Mihalcea, M.E. Webber, D.S. Baer, R.K. Hanson, G.S. Feller, W.B. Chapman, Appl. Phys B 67, 283 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Y.S. Zhang, C.Q. Gao, M.W. Gao, Y. Zheng, L. Wang, R. Wang, Appl. Opt. 50, 4232 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    X.M. Duan, B.Q. Yao, C.W. Song, J. Gao, Y.Z. Wang, Laser Phys. Lett. 5, 800 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    H.J. Strauss, D. Preussler, M.J.D. Esser, W. Koen, C. Jacobs, O.J.P. Collett, C. Bollig, Opt. Lett. 38, 1022 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    P.A. Budni, M.L. Lemons, J.R. Mosto, E.P. Chicklis, IEEE J. Quantum Electron. 6, 629 (2000)CrossRefGoogle Scholar
  8. 8.
    X.T. Yang, X.Z. Ma, W.H. Li, Optik 25, 3943 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Z.H. Cong, Z.G. Liu, Z.J. Qin, X.Y. Zhang, S.W. Wang, H. Rao, Q. Fu, Appl. Opt. 54, 5143 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    T.W. Murphy Jr., S.D. Goodrow, Appl. Opt. 52, 117 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S.E. Segre, V. Zanza, J. Opt. Soc. Am. A 20, 1804 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    W.J. He, Y.G. Fu, Y. Zheng, L. Zhang, J.K. Wang, Z.Y. Liu, J.P. Zheng, Appl. Opt. 52, 4527 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    J.W. Chen, Appl. Opt. 21, 4329 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    W.Q. Gao, G.M. Yao, L.X. Xu, Y. Cheng, H. Ming, J.P. Xie, Chin. Opt. Lett. 4, 332 (2004)ADSGoogle Scholar
  15. 15.
    J. Wu, Y.L. Ju, T.Y. Dai, W. Liu, B.Q. Yao, Y.Z. Wang, Chin. Phys. Lett. 32, 80 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Y. P. Wang
    • 1
  • Y. L. Ju
    • 1
  • J. Wu
    • 1
  • T. Y. Dai
    • 1
    Email author
  • B. Q. Yao
    • 1
  1. 1.National Key Laboratory of Tunable Laser TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations