Applied Physics B

, 124:194 | Cite as

THz generation from DFG in a noncollinear phase-matched GaP crystal pumped with a compact diode-pumped two-frequency LiYF4:Nd laser

  • A. BrenierEmail author


Pumping with a nanosecond two-frequency compact diode-pumped LiYF4:Nd laser emitting at 1047 and 1053 nm, a THz wave has been produced in a GaP crystal, attributed to the difference frequency generation process \(\frac{1}{{{\lambda _3}}} - \frac{1}{{{\lambda _2}}}=\frac{1}{{{\lambda _{{\text{TH}}z}}}}\). In a first set-up, the two pumping beams had a tunable angular separation provided by a sapphire prism. The phase matching angle of the noncollinear interaction has been determined to be 0.202° external angle and the refractive index 3.377 at 1.6 THz. The angular acceptance was rather broad, due to the fact that the thickness of the nonlinear crystal was only 3 mm. With a second set-up using a beam displacer constituted by YVO4 plates of different thicknesses, smaller angular separations were explored under other directions of polarizations of the pump beams. Because at the three wavelengths involved in this study the velocity of the nonlinear polarization wave inside GaP is higher than the THz wave phase velocity, a Cerenkov phase matching is possible. The plane-wave calculations show that the THz radiation under this process exits from the output face of the crystal, as it is experimentally observed.



We thank Y. Guillin, J.-F. Sivignon and P. Bonneteau for their technical assistance.


  1. 1.
    M. Koch, Opt. Photon. News 18(3), 20 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    I. Duling, D. Zimdars, Laser Focus World 43, 63 (2007)Google Scholar
  3. 3.
    A. Borghesi, G. Guizzetti, in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic, New York, 1985), pp. 445–464CrossRefGoogle Scholar
  4. 4.
    F.L. Madarasz, J.O. Dimmock, N. Dietz, K.J. Bachmann, J. Appl. Phys. 87(3), 1564 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Y.J. Ding, W. Shi, Sol. State Electron. 50, 1128 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Y.J. Ding, P. Zhao, S. Ragam, D. Li, I.B. Zotova, Chin. Opt. Lett. 10, 110004 (2011)CrossRefGoogle Scholar
  7. 7.
    T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, K. Saito, J. Appl. Phys. 93(9), 4610 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    T. Tanabe, K. Suto, J. Nishizawa, K. Saito, T. Kimura, Appl. Phys. Lett. 83(2), 237 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Brenier, Opt. Lett. 40(19), 4496 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    G. Alombert-Goget, A. Brenier, Y. Guyot, A. Labruyère, V. Couderc, B. Faure, Opt. Express 22, 10792 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    C.Y. Cho, T.L. Huang, S.M. Wen, Y.J. Huang, K.F. Huang, Y.F. Chen, Opt. Express 22, 25318 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    R. Czarny, M. Alouini, C. Larat, M. Krakowski, D. Dolfi, Electron. Lett. 40, 942 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J.-F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, M. Alouini, Terahertz Sci Technol IEEE Trans 4, 260 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A. Brenier, Las. Phys. Lett. 8, 520 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A. Brenier, Y. Wu, P. Fu, J. Zhang, Y. Zu, Opt. Express 17, 18730 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    F. Pallas, E. Herault, J.-F. Roux, A. Kevorkian, J.-L. Coutaz, G. Vitrant, Opt. Lett. 37, 2817 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Y.J. Huang, Y.S. Tzeng, C.Y. Tang, S.Y. Chiang, H.C. Liang, Y.F. Chen, Opt. Lett. 39, 1477 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    I.H. Malitson, M.J. Dodge, J. Opt. Soc. Am. 62, 1405 (1972)Google Scholar
  19. 19.
    G.A. Askar’yan, Sov. Phys.-JETP 15, 943 (1962)Google Scholar
  20. 20.
    U.A. Abdullin, G.A. Lyakthov, O.V. Rudenko, A.S. Chirkin, Sov. Phys.-JETP 39, 633 (1974)ADSGoogle Scholar
  21. 21.
    D.A. Bagdasaryan, A.O. Makaryan, P.S. Pogosyan, JETP Lett. 37, 594 (1983)ADSGoogle Scholar
  22. 22.
    J.A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, R. Beigang, Appl. Phys. B: Las. Opt. 86, 185 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ Lyon, Université Claude Bernard Lyon 1, CNRSInstitut Lumière MatièreLyonFrance

Personalised recommendations