Advertisement

Applied Physics B

, 124:200 | Cite as

Nonlinear optical properties of lead-free ferroelectric nanostructured perovskite

  • Sai Pavan Prashanth Sadhu
  • P. W. Jaschin
  • Sreekanth Perumbilavil
  • Anitta Rose Thomas
  • V. Sai Muthukumar
  • Reji Philip
  • K. B. R. Varma
Article
  • 175 Downloads

Abstract

Lead-free perovskite materials with superior physical properties are currently explored for ferroelectric and optoelectronic applications. Ferroelectric materials that have large spontaneous polarization concomitantly possess large nonlinear optical response which is highly suitable for novel photonic applications. Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) is one such novel lead-free ferroelectric material with large piezoelectric response arising from existence of morphotropic phase boundary. Conventional sol–gel technique was adopted for synthesizing nanostructured BCZT (nano-BCZT) powder using citrate precursor route. X-ray powder diffraction confirmed the phase purity and high-resolution transmission electron microscopy (HRTEM) proved that the as-synthesized BCZT was indeed nanostructured. Supportively, Raman vibrational analysis was employed to validate the site occupancies of dopants and structural correlations when compared to undoped and pristine barium titanate. Nanostructured barium titanate is extensively studied as biomarkers in second harmonic generation (SHG) microscopy for bio-medical applications. In our current work, we have explored both second- and third-order nonlinear optical response of nano-BCZT. These were found to exhibit stronger SHG signal than potassium di-hydrogen phosphate (KDP) which is a well-known SHG standard. Subsequently, we also have investigated their third-order nonlinear optical properties using open aperture Z-scan technique at 532-nm excitation wavelength in the nanosecond regime. Nano-BCZT was found to exhibit strong two-photon absorption behavior. Such materials with multiphoton absorption behavior are favorable for nonlinear photonics devices such as optical limiters and contrast agents in nonlinear optical microscopy.

Notes

Acknowledgements

The authors from SSSIHL thank the founder Chancellor Bhagawan Sri Sathya Sai Baba and Trustees/Administrators for providing characterization facilities at Central Research Instruments Facility (SSSIHL-CRIF). The authors also acknowledge the financial support from DST-FIST (Sanction No. SR/FST/PSI-172/2012) for complementary characterization facilities at Department of Physics. The author Sadhu Sai Pavan Prashanth expresses special thanks to Council of Scientific and Industrial Research (CSIR), Govt. of India, for the award of Senior Research Fellowship [UGC (India)—2121351058].

References

  1. 1.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)CrossRefGoogle Scholar
  2. 2.
    V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, S. Ram, Katiyar, Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors. J. Phys. D: Appl. Phys. 44(39), 395403 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M.D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B.J. Offrein, J. Fompeyrine, A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat. Commun. 4(1671), 1–6 (2013)Google Scholar
  4. 4.
    E. Kim, A. Steinbru, M.T. Buscaglia, V. Buscaglia, T. Pertsch, R. Grange, Second-harmonic generation of single diameter BaTiO3 nanoparticles down to 22 nm diameter. ACS Nano 7(6), 5343–5349 (2013)CrossRefGoogle Scholar
  5. 5.
    F. Timpu, N.R. Hendricks, M. Petrov, S. Ni, C. Renaut, H. Wolf, L. Isa, Y. Kivshar, R. Grange, Enhanced second-harmonic generation from sequential capillarity-assisted particle assembly of hybrid nanodimers. Nano Lett. 17(9), 5381–5388 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    R. Ladj, A. Bitar, M. Eissa, Y. Mugnier, R. Le Dantec, H. Fessi, A. Elaissari, Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J. Mater. Chem. B 1(10), 1381–1396 (2013)CrossRefGoogle Scholar
  7. 7.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, New York, 2007), pp. 517–525Google Scholar
  8. 8.
    K.J. Kormondy, Y. Popoff, M. Sousa, F. Eltes, Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics. Nanotechnology 28(7), 075706 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    P.K. Panda, B. Sahoo, PZT to lead-free piezo ceramics: a review. Ferroelectrics 474(1), 128–143 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Mimura, T. Naka, T. Shimura, W. Sakamoto, T. Yogo, Synthesis and dielectric properties of (Ba, Ca)(Zr, Ti) O3 thin films using metal-organic precursor solutions. Thin Solid Films 516, 8408–8413 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    L.L. Jiang, X.G. Tang, Q. Li, H.L.W. Chan, Dielectric properties of (Ba,Ca)(Zr,Ti)O3/CaRuO3 heterostructure thin films prepared by pulsed laser deposition. Vaccum 83(6), 1018–1021 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    V.B. Shirokov, A.G. Razumnaya, Y.I. Yuzyuk, Tunable pyroelectric properties of barium strontium titanate thin films. J. Phys. Condens. Matter. 29(18), 185701 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R.L. Sutherland, D.G. Mclean, S. Kirkpatrick, Handbook of Nonlinear Optics (Marcel Dekker Inc., New York, 1996)Google Scholar
  15. 15.
    G. Hailu, G. Tessema, B. Diop, N.N. Manyala, M. Maaza, Nonlinear optical absorption properties of porphyrins confined in Nafion membrane. Appl Phys A 96, 685–689 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    W.F. Zhang, Y.B. Huang, M.S. Zhang, Z.G. Liu, Nonlinear optical absorption in undoped and cerium-doped BaTiO3 thin films using Z-scan technique. Appl. Phys. Lett. 76(8), 1003–1005 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    G. Yang, W. Wang, Y. Zhou, H. Lu, G. Yang, G. Yang, W. Wang, Y. Zhou, H. Lu, G. Yang, Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films. Appl. Phys. Lett. 81(21), 3969–3971 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, Z. Chen, Z-scan determination of the large third-order optical nonlinearity of Rh: BaTiO3 thin films deposited on MgO substrates. Opt. Commun. 209, 445–449 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    R. Reshmi, M.T. Sebastian, Linear and nonlinear optical properties of rare earth doped of Ba0.7 Sr0.3TiO3 thin films. Appl. Phys. B 96, 433–437 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    K.V. Saravanan, K.C.J. Raju, M.G. Krishna, S.P. Tewari, S.V. Rao, Large three-photon absorption in Ba0.5 Sr0.5 TiO3 films studied using Z-scan technique. Appl. Phys. Lett. 96(23), 232905 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    T. Woldu, B. Raneesh, P. Sreekanth, M.V. Ramana Reddy, R. Philip, N. Kalarikkal, Size dependent nonlinear optical absorption in BaTiO3 nanoparticles. Chem. Phys. Lett. 625, 58–63 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    M. Wang, R. Zuo, S. Qi, L. Liu, Synthesis and characterization of sol–gel derived (Ba,Ca)(Ti,Zr)O3 nanoparticles. J. Mater. Sci. Mater. Electron. 23, 753–757 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Bhimireddi, B. Ponraj, K.B.R. Varma, Structural, optical, and piezoelectric response of lead-free Ba0.95 Mg0.05 Zr0.1 Ti0.9 O3 nanocrystalline powder. J. Am. Ceram. Soc. 99(3), 896–904 (2015)CrossRefGoogle Scholar
  24. 24.
    P. Bharathi, P. Thomas, K.B.R. Varma, Piezoelectric properties of individual nanocrystallites of Ba0.85Ca0.15Zr0.1Ti0.9O3 obtained by oxalate precursor route. J. Mater. Chem. C 3(18), 4762–4770 (2015)CrossRefGoogle Scholar
  25. 25.
    S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39(8), 3798–3813 (1968)ADSCrossRefGoogle Scholar
  26. 26.
    M. Didomenico, S.H. Wemple, S.P. Porto, Raman spectrum of single-domain BaTiO3. Phys. Rev. 174(2), 524–530 (1968)ADSCrossRefGoogle Scholar
  27. 27.
    D. Damjanovic, A. Biancoli, L. Batooli, A. Vahabzadeh, J. Trodahl, Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3. Appl. Phys. Lett. 100(19), 192907 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    J. Pokorný, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, Use of Raman spectroscopy to determine the site occupancy of BaTiO3. J. Appl. Phys. 109(11), 114110 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    P.W. Jaschin, K.B.R. Varma, Structural evolution and second harmonic properties of lithium niobate–tantalate nanocrystals embedded in a borate glass. J. Non. Cryst. Solids. 434, 41–52 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    S. Tukaram, R. Bhimireddi, K.B.R. Varma, Nano/micro Sr2Bi4Ti5O18 crystallites: size dependent structural, second harmonic and piezoelectric properties. Mater. Sci. Eng. B 211, 101–109 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    H. Pan, W. Chen, Y.P. Feng, W. Ji, J. Lin, Optical limiting properties of metal nanowires. Appl. Phys. Lett. 88(22), 223106 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    J. Wang, W.J. Blau, Inorganic and hybrid nanostructures for optical limiting. J. Opt. A. Pure Appl. Opt. 11(9), 024001 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    T. Woldu, B. Raneesh, P. Sreekanth, M.R. Reddy, R. Philip, N. Kalarikkal, Nonlinear optical properties of (1 − x) CaFe2O4–xBaTiO3 composites. Ceram. Int. 42(9), 11093–11098 (2016)CrossRefGoogle Scholar
  35. 35.
    W. Wei-Tian, Y. Guang, D. Ping, Z. Yue-Liang, C. Zheng-Hao, Fe-doped BaTiO3 thin films with large third-order nonlinear optical susceptibility. Chin. Phys. Lett. 19(8), 1122 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    D. Ambika, V. Kumar, C.S.S. Sandeep, Non-linear optical properties of (Pb1–xSrx) TiO3 thin films. Appl. Phys. B 97, 661–664 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    T. Zhang, W. Zhang, Y. Chen, J. Yin, Third-order optical nonlinearities of lead-free (Na1–xKx)0.5Bi0.5TiO3 thin films. Opt. Commun. 281(3), 439–443 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Y.H. Wang, B. Gu, G.D. Xu, Y.Y. Zhu, Nonlinear optical properties of neodymium-doped bismuth titanate thin films using Z-scan technique. Appl. Phy. Lett. 84(10), 1686–1688 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sai Pavan Prashanth Sadhu
    • 1
  • P. W. Jaschin
    • 2
  • Sreekanth Perumbilavil
    • 3
  • Anitta Rose Thomas
    • 3
  • V. Sai Muthukumar
    • 1
  • Reji Philip
    • 3
  • K. B. R. Varma
    • 1
    • 2
  1. 1.Department of PhysicsSri Sathya Sai Institute of Higher LearningAnantapurIndia
  2. 2.Materials Research CentreIndian Institute of ScienceBangaloreIndia
  3. 3.Light and Matter Physics GroupRaman Research InstituteBangaloreIndia

Personalised recommendations